Matches in SemOpenAlex for { <https://semopenalex.org/work/W2108451036> ?p ?o ?g. }
- W2108451036 endingPage "12" @default.
- W2108451036 startingPage "1" @default.
- W2108451036 abstract "Context. Three-dimensional (3D) radiative hydrodynamic model atmospheres of metal-poor late-type stars are characterized by cooler upper photospheric layers than their one-dimensional counterparts. This property of 3D model atmospheres can dramatically affect the determination of elemental abundances from temperature-sensitive spectral features, with profound consequences on galactic chemical evolution studies. Aims. We investigate whether the cool surface temperatures predicted by 3D model atmospheres of metal-poor stars can be ascribed to approximations in the treatment of scattering during the modelling phase. Methods. We use the Bifrost code to construct 3D model atmospheres of metal-poor stars and test three different ways to handle scattering in the radiative transfer equation. As a first app roach, we solve iteratively the radiative transfer equatio n for the general case of a source function with a coherent scattering term, tr eating scattering in a correct and consistent way. As a second approach, we solve the radiative transfer equation in local thermodynamic equilibrium approximation, neglecting altogether the contribution of continuum scattering to extinction in the optically thin la yers; this has been the default mode in our previous 3D modelling as well as in present Stagger-Code models. As our third and final approach, we treat continuum sc attering as pure absorption everywhere, which is the standard case in the 3D modelling by the CO 5 BOLD collaboration. Results. For all simulations, we find that the second approach produce s temperature structures with cool upper photospheric layers very similar to the case in which scattering is treated corre ctly. In contrast, treating scattering as pure absorption l eads instead to significantly hotter and shallower temperature stratificat ions. The main differences in temperature structure between our published models computed with the Stagger- and Bifrost codes and those generated with the CO 5 BOLD code can be traced to the different treatments of scattering. Conclusions. Neglecting the contribution of continuum scattering to extinction in optically thin layers provides a good approximation to the full, iterative solution of the radiative transfer eq uation in metal-poor stellar surface convection simulatio ns, and at a much lower computational cost. Our results also demonstrate that the cool temperature stratifications predicted for metal-poor l ate-type stars by previous models by our collaboration are not an artifact of the approximated treatment of scattering." @default.
- W2108451036 created "2016-06-24" @default.
- W2108451036 creator A5024091569 @default.
- W2108451036 creator A5032940586 @default.
- W2108451036 creator A5033587649 @default.
- W2108451036 creator A5063887198 @default.
- W2108451036 creator A5073579303 @default.
- W2108451036 creator A5083377507 @default.
- W2108451036 date "2011-04-01" @default.
- W2108451036 modified "2023-09-23" @default.
- W2108451036 title "Three-dimensional surface convection simulations of metal-poor stars The effect of scattering on the photospheric temperature stratification" @default.
- W2108451036 cites W1509402453 @default.
- W2108451036 cites W1641048508 @default.
- W2108451036 cites W1941346439 @default.
- W2108451036 cites W1990643226 @default.
- W2108451036 cites W1997328279 @default.
- W2108451036 cites W2004962809 @default.
- W2108451036 cites W2007329177 @default.
- W2108451036 cites W2008641454 @default.
- W2108451036 cites W2019671710 @default.
- W2108451036 cites W2049561256 @default.
- W2108451036 cites W2059211736 @default.
- W2108451036 cites W2069801284 @default.
- W2108451036 cites W2098356857 @default.
- W2108451036 cites W2103252643 @default.
- W2108451036 cites W2105708574 @default.
- W2108451036 cites W2112429239 @default.
- W2108451036 cites W2117576477 @default.
- W2108451036 cites W2127519985 @default.
- W2108451036 cites W2130805817 @default.
- W2108451036 cites W2132358681 @default.
- W2108451036 cites W2138613133 @default.
- W2108451036 cites W2158191336 @default.
- W2108451036 cites W2163314548 @default.
- W2108451036 cites W2166771986 @default.
- W2108451036 cites W2899497983 @default.
- W2108451036 cites W3011274665 @default.
- W2108451036 cites W3100508456 @default.
- W2108451036 cites W3101974735 @default.
- W2108451036 cites W3102217185 @default.
- W2108451036 cites W3105817072 @default.
- W2108451036 hasPublicationYear "2011" @default.
- W2108451036 type Work @default.
- W2108451036 sameAs 2108451036 @default.
- W2108451036 citedByCount "6" @default.
- W2108451036 countsByYear W21084510362013 @default.
- W2108451036 countsByYear W21084510362017 @default.
- W2108451036 crossrefType "journal-article" @default.
- W2108451036 hasAuthorship W2108451036A5024091569 @default.
- W2108451036 hasAuthorship W2108451036A5032940586 @default.
- W2108451036 hasAuthorship W2108451036A5033587649 @default.
- W2108451036 hasAuthorship W2108451036A5063887198 @default.
- W2108451036 hasAuthorship W2108451036A5073579303 @default.
- W2108451036 hasAuthorship W2108451036A5083377507 @default.
- W2108451036 hasBestOaLocation W21084510361 @default.
- W2108451036 hasConcept C101991246 @default.
- W2108451036 hasConcept C120665830 @default.
- W2108451036 hasConcept C121332964 @default.
- W2108451036 hasConcept C150846664 @default.
- W2108451036 hasConcept C191486275 @default.
- W2108451036 hasConcept C199390426 @default.
- W2108451036 hasConcept C30475298 @default.
- W2108451036 hasConcept C44870925 @default.
- W2108451036 hasConcept C74902906 @default.
- W2108451036 hasConceptScore W2108451036C101991246 @default.
- W2108451036 hasConceptScore W2108451036C120665830 @default.
- W2108451036 hasConceptScore W2108451036C121332964 @default.
- W2108451036 hasConceptScore W2108451036C150846664 @default.
- W2108451036 hasConceptScore W2108451036C191486275 @default.
- W2108451036 hasConceptScore W2108451036C199390426 @default.
- W2108451036 hasConceptScore W2108451036C30475298 @default.
- W2108451036 hasConceptScore W2108451036C44870925 @default.
- W2108451036 hasConceptScore W2108451036C74902906 @default.
- W2108451036 hasLocation W21084510361 @default.
- W2108451036 hasLocation W21084510362 @default.
- W2108451036 hasLocation W21084510363 @default.
- W2108451036 hasLocation W21084510364 @default.
- W2108451036 hasOpenAccess W2108451036 @default.
- W2108451036 hasPrimaryLocation W21084510361 @default.
- W2108451036 hasRelatedWork W1641048508 @default.
- W2108451036 hasRelatedWork W1980225710 @default.
- W2108451036 hasRelatedWork W1990643226 @default.
- W2108451036 hasRelatedWork W2007329177 @default.
- W2108451036 hasRelatedWork W2013357310 @default.
- W2108451036 hasRelatedWork W2017241199 @default.
- W2108451036 hasRelatedWork W2019671710 @default.
- W2108451036 hasRelatedWork W2041106972 @default.
- W2108451036 hasRelatedWork W2050824483 @default.
- W2108451036 hasRelatedWork W2096433368 @default.
- W2108451036 hasRelatedWork W2098356857 @default.
- W2108451036 hasRelatedWork W2100183643 @default.
- W2108451036 hasRelatedWork W2132358681 @default.
- W2108451036 hasRelatedWork W2138613133 @default.
- W2108451036 hasRelatedWork W2899497983 @default.
- W2108451036 hasRelatedWork W3100508456 @default.
- W2108451036 hasRelatedWork W3102217185 @default.
- W2108451036 hasRelatedWork W3104427216 @default.
- W2108451036 hasVolume "528" @default.