Matches in SemOpenAlex for { <https://semopenalex.org/work/W2108474682> ?p ?o ?g. }
- W2108474682 endingPage "255" @default.
- W2108474682 startingPage "245" @default.
- W2108474682 abstract "Exposure to fungi, particularly in water damaged indoor environments, has been thought to exacerbate a number of adverse health effects, ranging from subjective symptoms such as fatigue, cognitive difficulties or memory loss to more definable diseases such as allergy, asthma and hypersensitivity pneumonitis. Understanding the role of fungal exposure in these environments has been limited by methodological difficulties in enumerating and identifying various fungal components in environmental samples. Consequently, data on personal exposure and sensitization to fungal allergens are mainly based on the assessment of a few select and easily identifiable species. The contribution of other airborne spores, hyphae and fungal fragments to exposure and allergic sensitization are poorly characterized. There is increased interest in the role of aerosolized fungal fragments following reports that the combination of hyphal fragments and spore counts improved the association with asthma severity. These fragments are particles derived from any intracellular or extracellular fungal structure and are categorized as either submicron particles or larger fungal fragments. In vitro studies have shown that submicron particles of several fungal species are aerosolized in much higher concentrations (300–500 times) than spores, and that respiratory deposition models suggest that such fragments of Stachybotrys chartarum may be deposited in 230–250 fold higher numbers than spores. The practical implications of these models are yet to be clarified for human exposure assessments and clinical disease. We have developed innovative immunodetection techniques to determine the extent to which larger fungal fragments, including hyphae and fractured conidia, function as aeroallergen sources. These techniques were based on the Halogen Immunoassay (HIA), an immunostaining technique that detects antigens associated with individual airborne particles >1 µm, with human serum immunoglobulin E (IgE). Our studies demonstrated that the numbers of total airborne hyphae were often significantly higher in concentration than conidia of individual allergenic genera. Approximately 25% of all hyphal fragments expressed detectable allergen and the resultant localization of IgE immunostaining was heterogeneous among the hyphae. Furthermore, conidia of ten genera that were previously uncharacterized could be identified as sources of allergens. These findings highlight the contribution of larger fungal fragments as aeroallergen sources and present a new paradigm of fungal exposure. Direct evidence of the associations between fungal fragments and building-related disease is lacking and in order to gain a better understanding, it will be necessary to develop diagnostic reagents and detection methods, particularly for submicron particles. Assays using monoclonal antibodies enable the measurement of individual antigens but interpretation can be confounded by cross-reactivity between fungal species. The recent development of species-specific monoclonal antibodies, used in combination with a fluorescent-confocal HIA technique should, for the first time, enable the speciation of morphologically indiscernible fungal fragments. The application of this novel method will help to characterize the contribution of fungal fragments to adverse health effects due to fungi and provide patient-specific exposure and sensitization profiles." @default.
- W2108474682 created "2016-06-24" @default.
- W2108474682 creator A5006246995 @default.
- W2108474682 creator A5015102283 @default.
- W2108474682 creator A5019980206 @default.
- W2108474682 creator A5020416565 @default.
- W2108474682 creator A5079819148 @default.
- W2108474682 creator A5083484066 @default.
- W2108474682 date "2006-01-01" @default.
- W2108474682 modified "2023-10-07" @default.
- W2108474682 title "Airborne fungal fragments and allergenicity" @default.
- W2108474682 cites W147948198 @default.
- W2108474682 cites W1555453674 @default.
- W2108474682 cites W1566941349 @default.
- W2108474682 cites W1755330600 @default.
- W2108474682 cites W1812113925 @default.
- W2108474682 cites W1930992675 @default.
- W2108474682 cites W1936562250 @default.
- W2108474682 cites W1961889452 @default.
- W2108474682 cites W1966591027 @default.
- W2108474682 cites W1973193033 @default.
- W2108474682 cites W1977007584 @default.
- W2108474682 cites W1978468694 @default.
- W2108474682 cites W1987553795 @default.
- W2108474682 cites W1989683917 @default.
- W2108474682 cites W1991135924 @default.
- W2108474682 cites W1991552502 @default.
- W2108474682 cites W1994418416 @default.
- W2108474682 cites W1997707474 @default.
- W2108474682 cites W2000788967 @default.
- W2108474682 cites W2009699168 @default.
- W2108474682 cites W2017199648 @default.
- W2108474682 cites W2021852487 @default.
- W2108474682 cites W2026514131 @default.
- W2108474682 cites W2030402294 @default.
- W2108474682 cites W2032761471 @default.
- W2108474682 cites W2041168198 @default.
- W2108474682 cites W2045965907 @default.
- W2108474682 cites W2047952602 @default.
- W2108474682 cites W2049694950 @default.
- W2108474682 cites W2051555638 @default.
- W2108474682 cites W2052303746 @default.
- W2108474682 cites W2053483609 @default.
- W2108474682 cites W2055454505 @default.
- W2108474682 cites W2057309068 @default.
- W2108474682 cites W2057675682 @default.
- W2108474682 cites W2062293629 @default.
- W2108474682 cites W2062904894 @default.
- W2108474682 cites W2065318407 @default.
- W2108474682 cites W2070782762 @default.
- W2108474682 cites W2072011622 @default.
- W2108474682 cites W2077068969 @default.
- W2108474682 cites W2082040093 @default.
- W2108474682 cites W2088305323 @default.
- W2108474682 cites W2093039089 @default.
- W2108474682 cites W2100152135 @default.
- W2108474682 cites W2101520378 @default.
- W2108474682 cites W2107532190 @default.
- W2108474682 cites W2109422790 @default.
- W2108474682 cites W2117979145 @default.
- W2108474682 cites W2119644465 @default.
- W2108474682 cites W2125851060 @default.
- W2108474682 cites W2127794443 @default.
- W2108474682 cites W2133635822 @default.
- W2108474682 cites W2137820173 @default.
- W2108474682 cites W2139023698 @default.
- W2108474682 cites W2143506208 @default.
- W2108474682 cites W2147199610 @default.
- W2108474682 cites W2151200321 @default.
- W2108474682 cites W2152376393 @default.
- W2108474682 cites W2152563928 @default.
- W2108474682 cites W2156204120 @default.
- W2108474682 cites W2168854465 @default.
- W2108474682 cites W2168917624 @default.
- W2108474682 cites W2168953328 @default.
- W2108474682 cites W2332088998 @default.
- W2108474682 cites W3192803869 @default.
- W2108474682 cites W32647378 @default.
- W2108474682 cites W4211190055 @default.
- W2108474682 cites W4234645366 @default.
- W2108474682 cites W4237736408 @default.
- W2108474682 doi "https://doi.org/10.1080/13693780600776308" @default.
- W2108474682 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17050446" @default.
- W2108474682 hasPublicationYear "2006" @default.
- W2108474682 type Work @default.
- W2108474682 sameAs 2108474682 @default.
- W2108474682 citedByCount "176" @default.
- W2108474682 countsByYear W21084746822012 @default.
- W2108474682 countsByYear W21084746822013 @default.
- W2108474682 countsByYear W21084746822014 @default.
- W2108474682 countsByYear W21084746822015 @default.
- W2108474682 countsByYear W21084746822016 @default.
- W2108474682 countsByYear W21084746822017 @default.
- W2108474682 countsByYear W21084746822018 @default.
- W2108474682 countsByYear W21084746822019 @default.
- W2108474682 countsByYear W21084746822020 @default.
- W2108474682 countsByYear W21084746822021 @default.
- W2108474682 countsByYear W21084746822022 @default.