Matches in SemOpenAlex for { <https://semopenalex.org/work/W2108483321> ?p ?o ?g. }
- W2108483321 endingPage "176" @default.
- W2108483321 startingPage "165" @default.
- W2108483321 abstract "Abstract Water has been labelled ‘blue gold’, and ‘blue gold’ is destined to be the critical issue of the 21st Century. Globally, irrigation is responsible for 80% of the world-wide spending of ‘blue gold’. Development of sustainable irrigation practices will require that we understand better the biophysical processes of root-water uptake in soil, and transpiration from plant canopies. Our review paper is divided into four parts: models, measurements, knowledge gaps and policy. First, we present a retrospective on what has been done with root-water uptake models since the pioneering scheme of Wilford R. Gardner in 1960. His solution for water movement to a plant root was analytical. Since then, nearly all the models calculate water flow using numerical solutions of the Richards’ equation. These schema include a water-uptake term specifically for the distributed uptake of water from soil by the root system. These models fall into two groups based on how the uptake term is handled. The most common formulations, called Type I, have evolved from the work of Gardner [Gardner, W.R., 1960. Dynamic aspects of water availability to plants. Soil Sci. 89, 63–73] and describe the microscale physics of water flow from the soil to, and through, the plant roots. The second form, Type II, comprises macroscopic, empirical functions that describe uptake based on responses to water potential. We discuss the merits and potential of these schemes. Yet, models are data hungry. Effective modeling requires apposite parameterisation to be effective. This can require substantive empiricism. Second, we present new data on the functioning of root-water uptake and transpiration by kiwifruit vines. We describe new observations in the root zone, obtained using arrays of time domain reflectometry (TDR) sensors. As well, we present results obtained with new methods of sap-flow measurement inside the kiwifruit vine's roots. These reveal the uptake dynamics during partial root zone drying (PRD), a technique oft-touted to reduce irrigation volumes. Next, we outline future research needs. This includes a requirement to infer better the matric potential at the soil–root boundary and its control on plant transpiration. We suggest that the role of reverse flow and specification of the root resistance also needs more researching. Further, linking the functioning of water uptake with the form of the root system will not be achievable until we know more about root resistance. Canopy area and architecture are critical for controlling transpiration, yet they are tiresome to measure. Improved measurement techniques, preferably remote, would enhance our ability to predict crop water-use and to assess more accurately the need for irrigation [Wesseling, J.G., Feddes, R.A., 2006. Assessing crop water productivity from field to regional scale. Agric. Water Manage. 86, 30–39]. Finally, we demonstrate how our scientific knowledge can be used to develop sustainable irrigation practices." @default.
- W2108483321 created "2016-06-24" @default.
- W2108483321 creator A5008744466 @default.
- W2108483321 creator A5078907584 @default.
- W2108483321 creator A5083424492 @default.
- W2108483321 date "2006-11-01" @default.
- W2108483321 modified "2023-10-01" @default.
- W2108483321 title "Root uptake and transpiration: From measurements and models to sustainable irrigation" @default.
- W2108483321 cites W1527787991 @default.
- W2108483321 cites W158657237 @default.
- W2108483321 cites W1608844939 @default.
- W2108483321 cites W1670347159 @default.
- W2108483321 cites W1697722100 @default.
- W2108483321 cites W175597252 @default.
- W2108483321 cites W1964613767 @default.
- W2108483321 cites W1965332245 @default.
- W2108483321 cites W1966631864 @default.
- W2108483321 cites W1967776482 @default.
- W2108483321 cites W1979028775 @default.
- W2108483321 cites W1985439724 @default.
- W2108483321 cites W1986538210 @default.
- W2108483321 cites W1988963857 @default.
- W2108483321 cites W1992029956 @default.
- W2108483321 cites W1992304378 @default.
- W2108483321 cites W1993197143 @default.
- W2108483321 cites W1993387482 @default.
- W2108483321 cites W1993453809 @default.
- W2108483321 cites W1995886129 @default.
- W2108483321 cites W2003566946 @default.
- W2108483321 cites W2005889608 @default.
- W2108483321 cites W2007545225 @default.
- W2108483321 cites W2010926074 @default.
- W2108483321 cites W2012118414 @default.
- W2108483321 cites W2019639384 @default.
- W2108483321 cites W2021641567 @default.
- W2108483321 cites W2023100848 @default.
- W2108483321 cites W2024189147 @default.
- W2108483321 cites W2027521826 @default.
- W2108483321 cites W2030555505 @default.
- W2108483321 cites W2031066739 @default.
- W2108483321 cites W2033318397 @default.
- W2108483321 cites W2035316585 @default.
- W2108483321 cites W2036630566 @default.
- W2108483321 cites W2037508566 @default.
- W2108483321 cites W2037562170 @default.
- W2108483321 cites W2043501119 @default.
- W2108483321 cites W2048846478 @default.
- W2108483321 cites W2049660042 @default.
- W2108483321 cites W2057238616 @default.
- W2108483321 cites W2064713545 @default.
- W2108483321 cites W2066303702 @default.
- W2108483321 cites W2069725108 @default.
- W2108483321 cites W2075669638 @default.
- W2108483321 cites W2081137326 @default.
- W2108483321 cites W2081751985 @default.
- W2108483321 cites W2084114300 @default.
- W2108483321 cites W2087057882 @default.
- W2108483321 cites W2088108590 @default.
- W2108483321 cites W2089453393 @default.
- W2108483321 cites W2090206799 @default.
- W2108483321 cites W2091793235 @default.
- W2108483321 cites W2092779582 @default.
- W2108483321 cites W2092869579 @default.
- W2108483321 cites W2093128974 @default.
- W2108483321 cites W2104938456 @default.
- W2108483321 cites W2109999022 @default.
- W2108483321 cites W2111308289 @default.
- W2108483321 cites W2117804608 @default.
- W2108483321 cites W2124450566 @default.
- W2108483321 cites W2125346470 @default.
- W2108483321 cites W2135405834 @default.
- W2108483321 cites W2139289968 @default.
- W2108483321 cites W2151090268 @default.
- W2108483321 cites W2158683657 @default.
- W2108483321 cites W2164630180 @default.
- W2108483321 cites W2171466715 @default.
- W2108483321 cites W2234943040 @default.
- W2108483321 cites W2317488766 @default.
- W2108483321 cites W2324913510 @default.
- W2108483321 cites W2334913995 @default.
- W2108483321 cites W2335510361 @default.
- W2108483321 cites W3083040990 @default.
- W2108483321 cites W4237557220 @default.
- W2108483321 cites W434732507 @default.
- W2108483321 doi "https://doi.org/10.1016/j.agwat.2006.06.008" @default.
- W2108483321 hasPublicationYear "2006" @default.
- W2108483321 type Work @default.
- W2108483321 sameAs 2108483321 @default.
- W2108483321 citedByCount "104" @default.
- W2108483321 countsByYear W21084833212012 @default.
- W2108483321 countsByYear W21084833212013 @default.
- W2108483321 countsByYear W21084833212014 @default.
- W2108483321 countsByYear W21084833212015 @default.
- W2108483321 countsByYear W21084833212016 @default.
- W2108483321 countsByYear W21084833212017 @default.
- W2108483321 countsByYear W21084833212018 @default.
- W2108483321 countsByYear W21084833212019 @default.
- W2108483321 countsByYear W21084833212020 @default.