Matches in SemOpenAlex for { <https://semopenalex.org/work/W2108507654> ?p ?o ?g. }
- W2108507654 endingPage "569" @default.
- W2108507654 startingPage "549" @default.
- W2108507654 abstract "A Bayesian approach is proposed for an accelerated failure time model with interval-censored data. The model allows for structured correlated data by inclusion of a random effect part that might depend on covariates, as in a linear mixed model. The error distribution is modelled as a normal mixture with an un- known number of components. Also, the means and variances of the components are not prespecified so as to accommodate most continuous distributions. This re- sults, among other things, in a nearly correct estimation of the shape of the hazard and survivor curves. A Markov chain Monte Carlo algorithm is described that sam- ples from the posterior distribution. The approach is evaluated using a simulation study, and is illustrated by modeling the emergence times of eight permanent teeth using data from the Signal Tandmobiel r study." @default.
- W2108507654 created "2016-06-24" @default.
- W2108507654 creator A5066104231 @default.
- W2108507654 creator A5089172329 @default.
- W2108507654 date "2007-04-01" @default.
- W2108507654 modified "2023-09-26" @default.
- W2108507654 title "BAYESIAN ACCELERATED FAILURE TIME MODEL FOR CORRELATED INTERVAL-CENSORED DATA WITH A NORMAL MIXTURE AS ERROR DISTRIBUTION" @default.
- W2108507654 cites W109881820 @default.
- W2108507654 cites W130037070 @default.
- W2108507654 cites W1570622790 @default.
- W2108507654 cites W1593493925 @default.
- W2108507654 cites W1816076910 @default.
- W2108507654 cites W1966947316 @default.
- W2108507654 cites W1975878455 @default.
- W2108507654 cites W1986453770 @default.
- W2108507654 cites W1988556062 @default.
- W2108507654 cites W1988684120 @default.
- W2108507654 cites W1992402718 @default.
- W2108507654 cites W2000814483 @default.
- W2108507654 cites W2004243167 @default.
- W2108507654 cites W2008437273 @default.
- W2108507654 cites W2036160850 @default.
- W2108507654 cites W2036764142 @default.
- W2108507654 cites W2037595735 @default.
- W2108507654 cites W2045656233 @default.
- W2108507654 cites W2048697190 @default.
- W2108507654 cites W2050396156 @default.
- W2108507654 cites W2051545900 @default.
- W2108507654 cites W2052376791 @default.
- W2108507654 cites W2057968703 @default.
- W2108507654 cites W2060530519 @default.
- W2108507654 cites W2068745974 @default.
- W2108507654 cites W2073513937 @default.
- W2108507654 cites W2076313071 @default.
- W2108507654 cites W2082246284 @default.
- W2108507654 cites W2082581821 @default.
- W2108507654 cites W2083972068 @default.
- W2108507654 cites W2087101057 @default.
- W2108507654 cites W2089603425 @default.
- W2108507654 cites W2094377207 @default.
- W2108507654 cites W2104232463 @default.
- W2108507654 cites W2106706098 @default.
- W2108507654 cites W2107368116 @default.
- W2108507654 cites W2118502261 @default.
- W2108507654 cites W2121493622 @default.
- W2108507654 cites W2129530396 @default.
- W2108507654 cites W2129589606 @default.
- W2108507654 cites W2134306657 @default.
- W2108507654 cites W2135459617 @default.
- W2108507654 cites W2141770651 @default.
- W2108507654 cites W2148534890 @default.
- W2108507654 cites W2149860264 @default.
- W2108507654 cites W2153891154 @default.
- W2108507654 cites W2156230899 @default.
- W2108507654 cites W2164427615 @default.
- W2108507654 cites W2166698530 @default.
- W2108507654 cites W2321049301 @default.
- W2108507654 cites W2796700885 @default.
- W2108507654 cites W2995133996 @default.
- W2108507654 hasPublicationYear "2007" @default.
- W2108507654 type Work @default.
- W2108507654 sameAs 2108507654 @default.
- W2108507654 citedByCount "5" @default.
- W2108507654 countsByYear W21085076542014 @default.
- W2108507654 countsByYear W21085076542015 @default.
- W2108507654 countsByYear W21085076542016 @default.
- W2108507654 crossrefType "journal-article" @default.
- W2108507654 hasAuthorship W2108507654A5066104231 @default.
- W2108507654 hasAuthorship W2108507654A5089172329 @default.
- W2108507654 hasConcept C105795698 @default.
- W2108507654 hasConcept C107673813 @default.
- W2108507654 hasConcept C111350023 @default.
- W2108507654 hasConcept C11413529 @default.
- W2108507654 hasConcept C114614502 @default.
- W2108507654 hasConcept C119043178 @default.
- W2108507654 hasConcept C126322002 @default.
- W2108507654 hasConcept C168743327 @default.
- W2108507654 hasConcept C2778067643 @default.
- W2108507654 hasConcept C28826006 @default.
- W2108507654 hasConcept C33923547 @default.
- W2108507654 hasConcept C41008148 @default.
- W2108507654 hasConcept C71924100 @default.
- W2108507654 hasConcept C95190672 @default.
- W2108507654 hasConceptScore W2108507654C105795698 @default.
- W2108507654 hasConceptScore W2108507654C107673813 @default.
- W2108507654 hasConceptScore W2108507654C111350023 @default.
- W2108507654 hasConceptScore W2108507654C11413529 @default.
- W2108507654 hasConceptScore W2108507654C114614502 @default.
- W2108507654 hasConceptScore W2108507654C119043178 @default.
- W2108507654 hasConceptScore W2108507654C126322002 @default.
- W2108507654 hasConceptScore W2108507654C168743327 @default.
- W2108507654 hasConceptScore W2108507654C2778067643 @default.
- W2108507654 hasConceptScore W2108507654C28826006 @default.
- W2108507654 hasConceptScore W2108507654C33923547 @default.
- W2108507654 hasConceptScore W2108507654C41008148 @default.
- W2108507654 hasConceptScore W2108507654C71924100 @default.
- W2108507654 hasConceptScore W2108507654C95190672 @default.
- W2108507654 hasIssue "2" @default.