Matches in SemOpenAlex for { <https://semopenalex.org/work/W2108516049> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2108516049 endingPage "207" @default.
- W2108516049 startingPage "159" @default.
- W2108516049 abstract "We consider an ill-posed Boussinesq equation which arises in shallow water waves and nonlinear lattices. This equation has growing and decaying modes in the linear as well as nonlinear regimes and its linearized growth rate σ for short-waves of wavenumber k is given by σ∼k2. Previous numerical studies have addressed numerical difficulties and construction of approximate solutions for ill-posed problems with short-wave instability up to σ∼k, e.g. Kelvin–Helmholtz (σ∼k) and Rayleigh–Taylor (σ∼k) instabilities. These same issues are addressed and critically examined here for the present problem which has more severe short-wave instability. In order to develop numerical techniques for constructing good approximate solutions of this equation, we use a finite difference scheme to investigate the effect of this short-wave instability on the numerical accuracy of the exact solitary wave solution of this equation. Computational evidence is presented which indicates that numerical accuracy of the solutions is lost very quickly due to severe growth of numerical errors, roundoff as well as truncation. We use both filtering and regularization techniques to control growth of these errors and to provide better approximate solutions of this equation. In the filtering technique, numerical experiments with three types of spectral filters of increasing order of regularity are performed. We examine the role of regularity of these filters on the accuracy of the numerical solutions. Numerical evidence is provided which indicates that the regularity of a filter plays an important role in improving the accuracy of the solutions. In the regularization technique, the ill-posed equation is regularized by adding a higher order term to the equation. Two types of higher order terms are discussed: (i) one that diminishes the growth rate of all modes below a cutoff wavenumber and sets the growth rate of all modes above it to zero; and (ii) the other one diminishes the growth rate of all modes and the growth rate asymptotically approaches to zero as the wavenumber approaches infinity. We have argued in favor of the first type of regularization and numerical results using a finite difference scheme are presented. Numerical evidence is provided which suggests that regularization in combination with the most regular (C2 here) spectral filter for small values of the regularization parameter can provide good approximate solutions of the ill-posed Boussinesq equation for longer time than possible otherwise. Some of the ideas presented here can possibly be utilized for solving other ill-posed problems with severe short-wave instabilities and may have an important role to play in numerical studies of their solutions." @default.
- W2108516049 created "2016-06-24" @default.
- W2108516049 creator A5034954097 @default.
- W2108516049 creator A5035889582 @default.
- W2108516049 date "1999-06-01" @default.
- W2108516049 modified "2023-09-23" @default.
- W2108516049 title "A numerical study of an ill-posed Boussinesq equation arising in water waves and nonlinear lattices: Filtering and regularization techniques" @default.
- W2108516049 cites W1996584940 @default.
- W2108516049 cites W2003215113 @default.
- W2108516049 cites W2028959982 @default.
- W2108516049 cites W2029900544 @default.
- W2108516049 cites W2046241712 @default.
- W2108516049 cites W2046292865 @default.
- W2108516049 cites W2069497453 @default.
- W2108516049 cites W2082528045 @default.
- W2108516049 cites W2088508768 @default.
- W2108516049 cites W2124457264 @default.
- W2108516049 cites W2127071879 @default.
- W2108516049 cites W2141590717 @default.
- W2108516049 cites W2157570796 @default.
- W2108516049 cites W2158611821 @default.
- W2108516049 doi "https://doi.org/10.1016/s0096-3003(98)10070-x" @default.
- W2108516049 hasPublicationYear "1999" @default.
- W2108516049 type Work @default.
- W2108516049 sameAs 2108516049 @default.
- W2108516049 citedByCount "43" @default.
- W2108516049 countsByYear W21085160492012 @default.
- W2108516049 countsByYear W21085160492013 @default.
- W2108516049 countsByYear W21085160492014 @default.
- W2108516049 countsByYear W21085160492015 @default.
- W2108516049 countsByYear W21085160492016 @default.
- W2108516049 countsByYear W21085160492017 @default.
- W2108516049 countsByYear W21085160492018 @default.
- W2108516049 countsByYear W21085160492019 @default.
- W2108516049 countsByYear W21085160492020 @default.
- W2108516049 countsByYear W21085160492021 @default.
- W2108516049 countsByYear W21085160492022 @default.
- W2108516049 countsByYear W21085160492023 @default.
- W2108516049 crossrefType "journal-article" @default.
- W2108516049 hasAuthorship W2108516049A5034954097 @default.
- W2108516049 hasAuthorship W2108516049A5035889582 @default.
- W2108516049 hasConcept C106214006 @default.
- W2108516049 hasConcept C120665830 @default.
- W2108516049 hasConcept C121130766 @default.
- W2108516049 hasConcept C121332964 @default.
- W2108516049 hasConcept C134306372 @default.
- W2108516049 hasConcept C154945302 @default.
- W2108516049 hasConcept C158622935 @default.
- W2108516049 hasConcept C176321772 @default.
- W2108516049 hasConcept C182310444 @default.
- W2108516049 hasConcept C18591234 @default.
- W2108516049 hasConcept C207821765 @default.
- W2108516049 hasConcept C2776135515 @default.
- W2108516049 hasConcept C28826006 @default.
- W2108516049 hasConcept C33923547 @default.
- W2108516049 hasConcept C41008148 @default.
- W2108516049 hasConcept C48753275 @default.
- W2108516049 hasConcept C57879066 @default.
- W2108516049 hasConcept C62520636 @default.
- W2108516049 hasConceptScore W2108516049C106214006 @default.
- W2108516049 hasConceptScore W2108516049C120665830 @default.
- W2108516049 hasConceptScore W2108516049C121130766 @default.
- W2108516049 hasConceptScore W2108516049C121332964 @default.
- W2108516049 hasConceptScore W2108516049C134306372 @default.
- W2108516049 hasConceptScore W2108516049C154945302 @default.
- W2108516049 hasConceptScore W2108516049C158622935 @default.
- W2108516049 hasConceptScore W2108516049C176321772 @default.
- W2108516049 hasConceptScore W2108516049C182310444 @default.
- W2108516049 hasConceptScore W2108516049C18591234 @default.
- W2108516049 hasConceptScore W2108516049C207821765 @default.
- W2108516049 hasConceptScore W2108516049C2776135515 @default.
- W2108516049 hasConceptScore W2108516049C28826006 @default.
- W2108516049 hasConceptScore W2108516049C33923547 @default.
- W2108516049 hasConceptScore W2108516049C41008148 @default.
- W2108516049 hasConceptScore W2108516049C48753275 @default.
- W2108516049 hasConceptScore W2108516049C57879066 @default.
- W2108516049 hasConceptScore W2108516049C62520636 @default.
- W2108516049 hasIssue "2-3" @default.
- W2108516049 hasLocation W21085160491 @default.
- W2108516049 hasOpenAccess W2108516049 @default.
- W2108516049 hasPrimaryLocation W21085160491 @default.
- W2108516049 hasRelatedWork W1143945821 @default.
- W2108516049 hasRelatedWork W1965313012 @default.
- W2108516049 hasRelatedWork W1978427708 @default.
- W2108516049 hasRelatedWork W2040219670 @default.
- W2108516049 hasRelatedWork W2050387214 @default.
- W2108516049 hasRelatedWork W2061466028 @default.
- W2108516049 hasRelatedWork W2144151855 @default.
- W2108516049 hasRelatedWork W2385931563 @default.
- W2108516049 hasRelatedWork W2394117945 @default.
- W2108516049 hasRelatedWork W2936074632 @default.
- W2108516049 hasVolume "101" @default.
- W2108516049 isParatext "false" @default.
- W2108516049 isRetracted "false" @default.
- W2108516049 magId "2108516049" @default.
- W2108516049 workType "article" @default.