Matches in SemOpenAlex for { <https://semopenalex.org/work/W2108589332> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2108589332 endingPage "S5" @default.
- W2108589332 startingPage "S5" @default.
- W2108589332 abstract "Presentation There are several statistical process control (SPC) methods used in industry that can be applied in healthcare. However, as noted in the earlier discussion by Toulany et al. regarding quasi-experimental designs for quality improvement research, several considerations must be taken into account when adapting these methods for the complex, high-risk healthcare arena. Industrial methods should be adjusted for (a) heterogeneity at the patient level, including illness type, individualized care, and demographics, (b) heterogeneity at the process level, including geographical and longitudinal clinical care variation, (c) lack of pre-existing standards of comparison for new products or processes, and (d) the critical difference between statistical variation and acceptable clinical risk. Potential methods for successful adaptation of industrial SPC methods for healthcare monitoring and improvement include (a) converting periodic data into cumulative charts to increase detection of trends and (b) addressing heterogeneity through risk adjustment, using a prediction model or propensity score matching. These adjustments tend to inflate Type I errors, however, due to repeated measurements. Thus, the Sequential Probability Ratio Testing (SPRT) method may be of particular use [1]. SPRT uses the more commonly available retrospective control data, accounts for repeated measurements, utilizes risk adjustment, and incorporates both alpha and beta error into the formal framework [2,3]. The upper control limit is the desired odds ratio, as determined by the hypothesis. Industrial SPC methods assume process homogeneity and that the outcome rate from the population establishes the threshold for detecting changes in the process. Using these techniques to analyze processes in healthcare often requires addressing the risk and complexities inherent in healthcare in order to obtain meaningful results. As with any data-driven project, the clinical question and limitations of the available data drive the selection of the patient cohort, SPC method, risk adjustment framework, alerting thresholds, and the interpretation of clinical significance. However, regardless of the SPC method used and the risk-adjustment framework, it is important to realize that performance of the risk adjustment model drives the overall result; thus understanding the strengths and weaknesses of each particular model is critical to clinical interpretations. In addition, detecting adverse outcomes over a long period requires recalibrating the model over time to adjust for systematic changes in clinical care. Finally, all signals detected using these methods require root cause analyses (RCA) and sensitivity analyses as they are hypothesis-generating, not confirming." @default.
- W2108589332 created "2016-06-24" @default.
- W2108589332 creator A5011689338 @default.
- W2108589332 creator A5018275518 @default.
- W2108589332 creator A5067432528 @default.
- W2108589332 date "2013-01-01" @default.
- W2108589332 modified "2023-09-30" @default.
- W2108589332 title "Time-series and risk-adjusted control charts" @default.
- W2108589332 cites W2099421969 @default.
- W2108589332 cites W2151251991 @default.
- W2108589332 doi "https://doi.org/10.1186/1748-5908-8-s1-s5" @default.
- W2108589332 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3633012" @default.
- W2108589332 hasPublicationYear "2013" @default.
- W2108589332 type Work @default.
- W2108589332 sameAs 2108589332 @default.
- W2108589332 citedByCount "3" @default.
- W2108589332 countsByYear W21085893322015 @default.
- W2108589332 countsByYear W21085893322018 @default.
- W2108589332 countsByYear W21085893322019 @default.
- W2108589332 crossrefType "journal-article" @default.
- W2108589332 hasAuthorship W2108589332A5011689338 @default.
- W2108589332 hasAuthorship W2108589332A5018275518 @default.
- W2108589332 hasAuthorship W2108589332A5067432528 @default.
- W2108589332 hasBestOaLocation W21085893321 @default.
- W2108589332 hasConcept C111919701 @default.
- W2108589332 hasConcept C137992405 @default.
- W2108589332 hasConcept C138816342 @default.
- W2108589332 hasConcept C143724316 @default.
- W2108589332 hasConcept C145642194 @default.
- W2108589332 hasConcept C151730666 @default.
- W2108589332 hasConcept C159110408 @default.
- W2108589332 hasConcept C196985124 @default.
- W2108589332 hasConcept C2780877353 @default.
- W2108589332 hasConcept C41008148 @default.
- W2108589332 hasConcept C71924100 @default.
- W2108589332 hasConcept C86803240 @default.
- W2108589332 hasConcept C98045186 @default.
- W2108589332 hasConceptScore W2108589332C111919701 @default.
- W2108589332 hasConceptScore W2108589332C137992405 @default.
- W2108589332 hasConceptScore W2108589332C138816342 @default.
- W2108589332 hasConceptScore W2108589332C143724316 @default.
- W2108589332 hasConceptScore W2108589332C145642194 @default.
- W2108589332 hasConceptScore W2108589332C151730666 @default.
- W2108589332 hasConceptScore W2108589332C159110408 @default.
- W2108589332 hasConceptScore W2108589332C196985124 @default.
- W2108589332 hasConceptScore W2108589332C2780877353 @default.
- W2108589332 hasConceptScore W2108589332C41008148 @default.
- W2108589332 hasConceptScore W2108589332C71924100 @default.
- W2108589332 hasConceptScore W2108589332C86803240 @default.
- W2108589332 hasConceptScore W2108589332C98045186 @default.
- W2108589332 hasIssue "Suppl 1" @default.
- W2108589332 hasLocation W21085893321 @default.
- W2108589332 hasLocation W21085893322 @default.
- W2108589332 hasLocation W21085893323 @default.
- W2108589332 hasOpenAccess W2108589332 @default.
- W2108589332 hasPrimaryLocation W21085893321 @default.
- W2108589332 hasRelatedWork W1971439051 @default.
- W2108589332 hasRelatedWork W2016202271 @default.
- W2108589332 hasRelatedWork W2038753955 @default.
- W2108589332 hasRelatedWork W2085866713 @default.
- W2108589332 hasRelatedWork W2099079867 @default.
- W2108589332 hasRelatedWork W2107330074 @default.
- W2108589332 hasRelatedWork W2151020154 @default.
- W2108589332 hasRelatedWork W2608168035 @default.
- W2108589332 hasRelatedWork W2907249043 @default.
- W2108589332 hasRelatedWork W4247900004 @default.
- W2108589332 hasVolume "8" @default.
- W2108589332 isParatext "false" @default.
- W2108589332 isRetracted "false" @default.
- W2108589332 magId "2108589332" @default.
- W2108589332 workType "article" @default.