Matches in SemOpenAlex for { <https://semopenalex.org/work/W2108592854> ?p ?o ?g. }
- W2108592854 abstract "Metabolic network models describing the biochemical reaction network and material fluxes inside microorganisms open interesting routes for the model-based optimization of bioprocesses. Dynamic metabolic flux analysis (dMFA) has lately been studied as an extension of regular metabolic flux analysis (MFA), rendering a dynamic view of the fluxes, also in non-stationary conditions. Recent dMFA implementations suffer from some drawbacks, though. More specifically, the fluxes are not estimated as specific fluxes, which are more biologically relevant. Also, the flux profiles are not smooth, and additional constraints like, e.g., irreversibility constraints on the fluxes, cannot be taken into account. Finally, in all previous methods, a basis for the null space of the stoichiometric matrix, i.e., which set of free fluxes is used, needs to be chosen. This choice is not trivial, and has a large influence on the resulting estimates. In this work, a new methodology based on a B-spline parameterization of the fluxes is presented. Because of the high degree of non-linearity due to this parameterization, an incremental knot insertion strategy has been devised, resulting in a sequence of non-linear dynamic optimization problems. These are solved using state-of-the-art dynamic optimization methods and tools, i.e., orthogonal collocation, an interior-point optimizer and automatic differentiation. Also, a procedure to choose an optimal basis for the null space of the stoichiometric matrix is described, discarding the need to make a choice beforehand. The proposed methodology is validated on two simulated case studies: (i) a small-scale network with 7 fluxes, to illustrate the operation of the algorithm, and (ii) a medium-scale network with 68 fluxes, to show the algorithm’s capabilities for a realistic network. The results show an accurate correspondence to the reference fluxes used to simulate the measurements, both in a theoretically ideal setting with no experimental noise, and in a realistic noise setting. Because, apart from a metabolic reaction network and the measurements, no extra input needs to be given, the resulting algorithm is a systematic, integrated and accurate methodology for dynamic metabolic flux analysis that can be run online in real-time if necessary." @default.
- W2108592854 created "2016-06-24" @default.
- W2108592854 creator A5003764514 @default.
- W2108592854 creator A5012688655 @default.
- W2108592854 creator A5069635982 @default.
- W2108592854 date "2014-12-01" @default.
- W2108592854 modified "2023-10-15" @default.
- W2108592854 title "Dynamic estimation of specific fluxes in metabolic networks using non-linear dynamic optimization" @default.
- W2108592854 cites W1717366851 @default.
- W2108592854 cites W1971777399 @default.
- W2108592854 cites W1975017523 @default.
- W2108592854 cites W1995945562 @default.
- W2108592854 cites W2003835605 @default.
- W2108592854 cites W2040450176 @default.
- W2108592854 cites W2047334633 @default.
- W2108592854 cites W2057883330 @default.
- W2108592854 cites W2060231596 @default.
- W2108592854 cites W2063486355 @default.
- W2108592854 cites W2063775398 @default.
- W2108592854 cites W2080475980 @default.
- W2108592854 cites W2092608614 @default.
- W2108592854 cites W2120900694 @default.
- W2108592854 cites W2123871098 @default.
- W2108592854 cites W2129477384 @default.
- W2108592854 cites W2141916481 @default.
- W2108592854 cites W2158196600 @default.
- W2108592854 cites W2166980679 @default.
- W2108592854 cites W4235623249 @default.
- W2108592854 doi "https://doi.org/10.1186/s12918-014-0132-0" @default.
- W2108592854 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4280005" @default.
- W2108592854 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25466625" @default.
- W2108592854 hasPublicationYear "2014" @default.
- W2108592854 type Work @default.
- W2108592854 sameAs 2108592854 @default.
- W2108592854 citedByCount "19" @default.
- W2108592854 countsByYear W21085928542015 @default.
- W2108592854 countsByYear W21085928542016 @default.
- W2108592854 countsByYear W21085928542017 @default.
- W2108592854 countsByYear W21085928542018 @default.
- W2108592854 countsByYear W21085928542019 @default.
- W2108592854 countsByYear W21085928542020 @default.
- W2108592854 countsByYear W21085928542021 @default.
- W2108592854 countsByYear W21085928542023 @default.
- W2108592854 crossrefType "journal-article" @default.
- W2108592854 hasAuthorship W2108592854A5003764514 @default.
- W2108592854 hasAuthorship W2108592854A5012688655 @default.
- W2108592854 hasAuthorship W2108592854A5069635982 @default.
- W2108592854 hasBestOaLocation W21085928541 @default.
- W2108592854 hasConcept C101810790 @default.
- W2108592854 hasConcept C11413529 @default.
- W2108592854 hasConcept C126255220 @default.
- W2108592854 hasConcept C160941953 @default.
- W2108592854 hasConcept C167091322 @default.
- W2108592854 hasConcept C185592680 @default.
- W2108592854 hasConcept C186060115 @default.
- W2108592854 hasConcept C28826006 @default.
- W2108592854 hasConcept C33923547 @default.
- W2108592854 hasConcept C41008148 @default.
- W2108592854 hasConcept C45374587 @default.
- W2108592854 hasConcept C55493867 @default.
- W2108592854 hasConcept C60644358 @default.
- W2108592854 hasConcept C62231903 @default.
- W2108592854 hasConcept C86803240 @default.
- W2108592854 hasConceptScore W2108592854C101810790 @default.
- W2108592854 hasConceptScore W2108592854C11413529 @default.
- W2108592854 hasConceptScore W2108592854C126255220 @default.
- W2108592854 hasConceptScore W2108592854C160941953 @default.
- W2108592854 hasConceptScore W2108592854C167091322 @default.
- W2108592854 hasConceptScore W2108592854C185592680 @default.
- W2108592854 hasConceptScore W2108592854C186060115 @default.
- W2108592854 hasConceptScore W2108592854C28826006 @default.
- W2108592854 hasConceptScore W2108592854C33923547 @default.
- W2108592854 hasConceptScore W2108592854C41008148 @default.
- W2108592854 hasConceptScore W2108592854C45374587 @default.
- W2108592854 hasConceptScore W2108592854C55493867 @default.
- W2108592854 hasConceptScore W2108592854C60644358 @default.
- W2108592854 hasConceptScore W2108592854C62231903 @default.
- W2108592854 hasConceptScore W2108592854C86803240 @default.
- W2108592854 hasIssue "1" @default.
- W2108592854 hasLocation W21085928541 @default.
- W2108592854 hasLocation W21085928542 @default.
- W2108592854 hasLocation W21085928543 @default.
- W2108592854 hasLocation W21085928544 @default.
- W2108592854 hasLocation W21085928545 @default.
- W2108592854 hasOpenAccess W2108592854 @default.
- W2108592854 hasPrimaryLocation W21085928541 @default.
- W2108592854 hasRelatedWork W1983989854 @default.
- W2108592854 hasRelatedWork W1984242440 @default.
- W2108592854 hasRelatedWork W1999460937 @default.
- W2108592854 hasRelatedWork W2018212195 @default.
- W2108592854 hasRelatedWork W2047334633 @default.
- W2108592854 hasRelatedWork W2070388085 @default.
- W2108592854 hasRelatedWork W2113329733 @default.
- W2108592854 hasRelatedWork W2133150343 @default.
- W2108592854 hasRelatedWork W2350881169 @default.
- W2108592854 hasRelatedWork W2613838074 @default.
- W2108592854 hasVolume "8" @default.
- W2108592854 isParatext "false" @default.
- W2108592854 isRetracted "false" @default.
- W2108592854 magId "2108592854" @default.