Matches in SemOpenAlex for { <https://semopenalex.org/work/W2108644900> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2108644900 endingPage "255" @default.
- W2108644900 startingPage "241" @default.
- W2108644900 abstract "Risk mapping in epidemiology enables areas with a low or high risk of disease contamination to be localized and provides a measure of risk differences between these regions. Risk mapping models for pooled data currently used by epidemiologists focus on the estimated risk for each geographical unit. They are based on a Poisson log-linear mixed model with a latent intrinsic continuous hidden Markov random field (HMRF) generally corresponding to a Gaussian autoregressive spatial smoothing. Risk classification, which is necessary to draw clearly delimited risk zones (in which protection measures may be applied), generally must be performed separately. We propose a method for direct classified risk mapping based on a Poisson log-linear mixed model with a latent discrete HMRF. The discrete hidden field (HF) corresponds to the assignment of each spatial unit to a risk class. The risk values attached to the classes are parameters and are estimated. When mapping risk using HMRFs, the conditional distribution of the observed field is modeled with a Poisson rather than a Gaussian distribution as in image segmentation. Moreover, abrupt changes in risk levels are rare in disease maps. The spatial hidden model should favor smoothed out risks, but conventional discrete Markov random fields (e.g. the Potts model) do not impose this. We therefore propose new potential functions for the HF that take into account class ordering. We use a Monte Carlo version of the expectation–maximization algorithm to estimate parameters and determine risk classes. We illustrate the method's behavior on simulated and real data sets. Our method appears particularly well adapted to localize high-risk regions and estimate the corresponding risk levels." @default.
- W2108644900 created "2016-06-24" @default.
- W2108644900 creator A5002938031 @default.
- W2108644900 creator A5005958606 @default.
- W2108644900 creator A5035028656 @default.
- W2108644900 creator A5035701254 @default.
- W2108644900 creator A5087684509 @default.
- W2108644900 date "2011-11-30" @default.
- W2108644900 modified "2023-10-16" @default.
- W2108644900 title "Classification method for disease risk mapping based on discrete hidden Markov random fields" @default.
- W2108644900 cites W1964591277 @default.
- W2108644900 cites W1965511886 @default.
- W2108644900 cites W1975706048 @default.
- W2108644900 cites W2004014822 @default.
- W2108644900 cites W2005541417 @default.
- W2108644900 cites W2021557681 @default.
- W2108644900 cites W2054287017 @default.
- W2108644900 cites W2101637284 @default.
- W2108644900 cites W2118754020 @default.
- W2108644900 cites W2144675138 @default.
- W2108644900 doi "https://doi.org/10.1093/biostatistics/kxr043" @default.
- W2108644900 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22133757" @default.
- W2108644900 hasPublicationYear "2011" @default.
- W2108644900 type Work @default.
- W2108644900 sameAs 2108644900 @default.
- W2108644900 citedByCount "22" @default.
- W2108644900 countsByYear W21086449002012 @default.
- W2108644900 countsByYear W21086449002013 @default.
- W2108644900 countsByYear W21086449002014 @default.
- W2108644900 countsByYear W21086449002015 @default.
- W2108644900 countsByYear W21086449002016 @default.
- W2108644900 countsByYear W21086449002017 @default.
- W2108644900 countsByYear W21086449002018 @default.
- W2108644900 countsByYear W21086449002019 @default.
- W2108644900 countsByYear W21086449002020 @default.
- W2108644900 countsByYear W21086449002021 @default.
- W2108644900 countsByYear W21086449002022 @default.
- W2108644900 crossrefType "journal-article" @default.
- W2108644900 hasAuthorship W2108644900A5002938031 @default.
- W2108644900 hasAuthorship W2108644900A5005958606 @default.
- W2108644900 hasAuthorship W2108644900A5035028656 @default.
- W2108644900 hasAuthorship W2108644900A5035701254 @default.
- W2108644900 hasAuthorship W2108644900A5087684509 @default.
- W2108644900 hasBestOaLocation W21086449001 @default.
- W2108644900 hasConcept C100906024 @default.
- W2108644900 hasConcept C105795698 @default.
- W2108644900 hasConcept C121332964 @default.
- W2108644900 hasConcept C130402806 @default.
- W2108644900 hasConcept C154945302 @default.
- W2108644900 hasConcept C155051063 @default.
- W2108644900 hasConcept C163716315 @default.
- W2108644900 hasConcept C166144826 @default.
- W2108644900 hasConcept C182081679 @default.
- W2108644900 hasConcept C23224414 @default.
- W2108644900 hasConcept C33923547 @default.
- W2108644900 hasConcept C3770464 @default.
- W2108644900 hasConcept C41008148 @default.
- W2108644900 hasConcept C49781872 @default.
- W2108644900 hasConcept C62520636 @default.
- W2108644900 hasConceptScore W2108644900C100906024 @default.
- W2108644900 hasConceptScore W2108644900C105795698 @default.
- W2108644900 hasConceptScore W2108644900C121332964 @default.
- W2108644900 hasConceptScore W2108644900C130402806 @default.
- W2108644900 hasConceptScore W2108644900C154945302 @default.
- W2108644900 hasConceptScore W2108644900C155051063 @default.
- W2108644900 hasConceptScore W2108644900C163716315 @default.
- W2108644900 hasConceptScore W2108644900C166144826 @default.
- W2108644900 hasConceptScore W2108644900C182081679 @default.
- W2108644900 hasConceptScore W2108644900C23224414 @default.
- W2108644900 hasConceptScore W2108644900C33923547 @default.
- W2108644900 hasConceptScore W2108644900C3770464 @default.
- W2108644900 hasConceptScore W2108644900C41008148 @default.
- W2108644900 hasConceptScore W2108644900C49781872 @default.
- W2108644900 hasConceptScore W2108644900C62520636 @default.
- W2108644900 hasIssue "2" @default.
- W2108644900 hasLocation W21086449001 @default.
- W2108644900 hasLocation W21086449002 @default.
- W2108644900 hasLocation W21086449003 @default.
- W2108644900 hasLocation W21086449004 @default.
- W2108644900 hasLocation W21086449005 @default.
- W2108644900 hasOpenAccess W2108644900 @default.
- W2108644900 hasPrimaryLocation W21086449001 @default.
- W2108644900 hasRelatedWork W1780951087 @default.
- W2108644900 hasRelatedWork W1994426410 @default.
- W2108644900 hasRelatedWork W1998849108 @default.
- W2108644900 hasRelatedWork W2043523275 @default.
- W2108644900 hasRelatedWork W2087294593 @default.
- W2108644900 hasRelatedWork W2168237838 @default.
- W2108644900 hasRelatedWork W2270431137 @default.
- W2108644900 hasRelatedWork W4293481910 @default.
- W2108644900 hasRelatedWork W4300432172 @default.
- W2108644900 hasRelatedWork W51652730 @default.
- W2108644900 hasVolume "13" @default.
- W2108644900 isParatext "false" @default.
- W2108644900 isRetracted "false" @default.
- W2108644900 magId "2108644900" @default.
- W2108644900 workType "article" @default.