Matches in SemOpenAlex for { <https://semopenalex.org/work/W2108671405> ?p ?o ?g. }
- W2108671405 endingPage "293" @default.
- W2108671405 startingPage "283" @default.
- W2108671405 abstract "AME Aquatic Microbial Ecology Contact the journal Facebook Twitter RSS Mailing List Subscribe to our mailing list via Mailchimp HomeLatest VolumeAbout the JournalEditorsSpecials AME 66:283-293 (2012) - DOI: https://doi.org/10.3354/ame01574 Denitrification by sulfur-oxidizing bacteria in a eutrophic lake Amy J. Burgin1,2,3,*, Stephen K. Hamilton1,2, Stuart E. Jones1,4, Jay T. Lennon1,5 1W. K. Kellogg Biological Station, 2Department of Zoology and 5Department of Microbiology and Molecular Genetics, Michigan State University, 3700 East Gull Lake Dr., Hickory Corners, Michigan 49060, USA 3Present address: School of Natural Resources, University of Nebraska-Lincoln, 3310 Holdredge St., 412 Hardin Hall, Lincoln, Nebraska 68583-0974, USA 4Present address: Department of Biological Sciences, University of Notre Dame, 264 Galvin Hall, Notre Dame, Indiana 46556, USA 6Present address: Department of Biology, Indiana University, 1001 E. 3rd St., Bloomington, Indiana 474053700, USA *Email: burginam@gmail.com ABSTRACT: Understanding the mechanistic controls of microbial denitrification is of central importance to both environmental microbiology and ecosystem ecology. Loss of nitrate (NO3−) is often attributed to carbon-driven (heterotrophic) denitrification. However, denitrification can also be coupled to sulfur (S) oxidation by chemolithoautotrophic bacteria. In the present study, we used an in situ stable isotope (15NO3−) tracer addition in combination with molecular approaches to understand the contribution of sulfur-oxidizing bacteria to the reduction of NO3− in a eutrophic lake. Samples were incubated across a total dissolved sulfide (H2S) gradient (2 to 95 µM) between the lower epilimnion and the upper hypolimnion. Denitrification rates were low at the top of the chemocline (4.5 m) but increased in the deeper waters (5.0 and 5.5 m), where H2S was abundant. Concomitant with increased denitrification at depths with high sulfide was the production of sulfate (SO42−), suggesting that the added NO3− was used to oxidize H2S to SO42−. Alternative nitrate removal pathways, including dissimilatory nitrate reduction to ammonium (DNRA) and anaerobic ammonium oxidation (anammox), did not systematically change with depth and accounted for 1 to 15% of the overall nitrate loss. Quantitative PCR revealed that bacteria of the Sulfurimonas genus that are known denitrifiers increased in abundance in response to NO3− addition in the treatments with higher H2S. Stoichiometric estimates suggest that H2S oxidation accounted for more than half of the denitrification at the depth with the highest sulfide concentration. The present study provides evidence that microbial coupling of S and nitrogen (N) cycling is likely to be important in eutrophic freshwater ecosystems. KEY WORDS: Denitrification · Nitrate reduction · Sulfur oxidation · Sulfur-driven denitrification · Sulfurimonas denitrificans · Sulfide · Wintergreen Lake Full text in pdf format PreviousNextCite this article as: Burgin AJ, Hamilton SK, Jones SE, Lennon JT (2012) Denitrification by sulfur-oxidizing bacteria in a eutrophic lake. Aquat Microb Ecol 66:283-293. https://doi.org/10.3354/ame01574 Export citation RSS - Facebook - Tweet - linkedIn Cited by Published in AME Vol. 66, No. 3. Online publication date: July 09, 2012 Print ISSN: 0948-3055; Online ISSN: 1616-1564 Copyright © 2012 Inter-Research." @default.
- W2108671405 created "2016-06-24" @default.
- W2108671405 creator A5014360161 @default.
- W2108671405 creator A5025079697 @default.
- W2108671405 creator A5059709529 @default.
- W2108671405 creator A5072710852 @default.
- W2108671405 date "2012-07-09" @default.
- W2108671405 modified "2023-10-01" @default.
- W2108671405 title "Denitrification by sulfur-oxidizing bacteria in a eutrophic lake" @default.
- W2108671405 cites W1536577417 @default.
- W2108671405 cites W156627570 @default.
- W2108671405 cites W1567810565 @default.
- W2108671405 cites W1808908829 @default.
- W2108671405 cites W1839937941 @default.
- W2108671405 cites W1965054150 @default.
- W2108671405 cites W1974287206 @default.
- W2108671405 cites W1984109478 @default.
- W2108671405 cites W1984257790 @default.
- W2108671405 cites W1985130880 @default.
- W2108671405 cites W1991333754 @default.
- W2108671405 cites W1995704030 @default.
- W2108671405 cites W1996972113 @default.
- W2108671405 cites W2003912780 @default.
- W2108671405 cites W2006925876 @default.
- W2108671405 cites W2017117784 @default.
- W2108671405 cites W2024010824 @default.
- W2108671405 cites W2025018339 @default.
- W2108671405 cites W2026699540 @default.
- W2108671405 cites W2032554059 @default.
- W2108671405 cites W2033084416 @default.
- W2108671405 cites W2034604465 @default.
- W2108671405 cites W2040154656 @default.
- W2108671405 cites W2044913165 @default.
- W2108671405 cites W2048266310 @default.
- W2108671405 cites W2053479400 @default.
- W2108671405 cites W2054008903 @default.
- W2108671405 cites W2054178484 @default.
- W2108671405 cites W2058269754 @default.
- W2108671405 cites W2060748352 @default.
- W2108671405 cites W2061044581 @default.
- W2108671405 cites W2073433356 @default.
- W2108671405 cites W2080831264 @default.
- W2108671405 cites W2081329861 @default.
- W2108671405 cites W2082413085 @default.
- W2108671405 cites W2086903981 @default.
- W2108671405 cites W2094339682 @default.
- W2108671405 cites W2118482166 @default.
- W2108671405 cites W2119097801 @default.
- W2108671405 cites W2120777049 @default.
- W2108671405 cites W2121381921 @default.
- W2108671405 cites W2127453670 @default.
- W2108671405 cites W2133231749 @default.
- W2108671405 cites W2135003112 @default.
- W2108671405 cites W2137560900 @default.
- W2108671405 cites W2148492494 @default.
- W2108671405 cites W2164404906 @default.
- W2108671405 cites W2166770684 @default.
- W2108671405 cites W2171437724 @default.
- W2108671405 cites W4237587075 @default.
- W2108671405 cites W4239425399 @default.
- W2108671405 doi "https://doi.org/10.3354/ame01574" @default.
- W2108671405 hasPublicationYear "2012" @default.
- W2108671405 type Work @default.
- W2108671405 sameAs 2108671405 @default.
- W2108671405 citedByCount "28" @default.
- W2108671405 countsByYear W21086714052012 @default.
- W2108671405 countsByYear W21086714052013 @default.
- W2108671405 countsByYear W21086714052014 @default.
- W2108671405 countsByYear W21086714052015 @default.
- W2108671405 countsByYear W21086714052016 @default.
- W2108671405 countsByYear W21086714052017 @default.
- W2108671405 countsByYear W21086714052018 @default.
- W2108671405 countsByYear W21086714052019 @default.
- W2108671405 countsByYear W21086714052020 @default.
- W2108671405 countsByYear W21086714052021 @default.
- W2108671405 countsByYear W21086714052022 @default.
- W2108671405 crossrefType "journal-article" @default.
- W2108671405 hasAuthorship W2108671405A5014360161 @default.
- W2108671405 hasAuthorship W2108671405A5025079697 @default.
- W2108671405 hasAuthorship W2108671405A5059709529 @default.
- W2108671405 hasAuthorship W2108671405A5072710852 @default.
- W2108671405 hasBestOaLocation W21086714051 @default.
- W2108671405 hasConcept C105859001 @default.
- W2108671405 hasConcept C107872376 @default.
- W2108671405 hasConcept C108970007 @default.
- W2108671405 hasConcept C111368507 @default.
- W2108671405 hasConcept C115726729 @default.
- W2108671405 hasConcept C127313418 @default.
- W2108671405 hasConcept C142796444 @default.
- W2108671405 hasConcept C178790620 @default.
- W2108671405 hasConcept C185592680 @default.
- W2108671405 hasConcept C186699998 @default.
- W2108671405 hasConcept C18903297 @default.
- W2108671405 hasConcept C207104238 @default.
- W2108671405 hasConcept C35195898 @default.
- W2108671405 hasConcept C39432304 @default.
- W2108671405 hasConcept C523546767 @default.
- W2108671405 hasConcept C537208039 @default.