Matches in SemOpenAlex for { <https://semopenalex.org/work/W2108687168> ?p ?o ?g. }
- W2108687168 endingPage "1032" @default.
- W2108687168 startingPage "1020" @default.
- W2108687168 abstract "An acoustic trap with miniaturized integrated transducers (MITs) for applications in non-contact trapping of cells or particles in a microfluidic channel was characterized by measuring the temperature increase and trapping strength. The fluid temperature was measured by the fluorescent response of Rhodamine B in the microchannel. The trapping strength was measured by the area of a trapped particle cluster counter-balanced by the hydrodynamic force. One of the main objectives was to obtain quantitative values of the temperature in the fluidic channel to ensure safe handling of cells and proteins. Another objective was to evaluate the trapping-to-temperature efficiency for the trap as a function of drive frequency. Thirdly, trapping-to-temperature efficiency data enables identifying frequencies and voltage values to use for in-trap temperature regulation. It is envisioned that operation with only in-trap temperature regulation enables the realization of small, simple and fast temperature-controlled trap systems. The significance of potential gradients at the trap edges due to the finite size of the miniaturized transducers for the operation was emphasized and expressed analytically. The influence of the acoustic near field was evaluated in FEM-simulation and compared with a more ideal 1D standing wave. The working principle of the trap was examined by comparing measurements of impedance, temperature increase and trapping strength with impedance transfer calculations of fluid-reflector resonances and frequencies of high reflectance at the fluid-reflector boundary. The temperature increase was found to be moderate, 7 °C for a high trapping strength, at a fluid flow of 0.5 mm s−1 for the optimal driving frequency. A fast temperature response with a fall time of 8 s and a rise time of 11 s was observed. The results emphasize the importance of selecting the proper drive frequency for long term handling of cells, as opposed to the more pragmatic way of selecting the frequency of the highest acoustic output. Trapping was demonstrated in a large interval between 9 and 11.5 MHz, while the main trapping peak displayed FWHM of 0.5 MHz. A large bandwidth enables a more robust manufacturing and operation while allowing the trapping platform to be used in applications where the fluid wavelength varies due to external variations in fluid temperature, density and pressure." @default.
- W2108687168 created "2016-06-24" @default.
- W2108687168 creator A5023982186 @default.
- W2108687168 creator A5033350741 @default.
- W2108687168 creator A5040855613 @default.
- W2108687168 creator A5053411065 @default.
- W2108687168 creator A5067125220 @default.
- W2108687168 creator A5086047305 @default.
- W2108687168 creator A5088330947 @default.
- W2108687168 date "2013-07-01" @default.
- W2108687168 modified "2023-10-17" @default.
- W2108687168 title "Temperature and trapping characterization of an acoustic trap with miniaturized integrated transducers – towards in-trap temperature regulation" @default.
- W2108687168 cites W1969083534 @default.
- W2108687168 cites W1976511562 @default.
- W2108687168 cites W1981326909 @default.
- W2108687168 cites W1987483019 @default.
- W2108687168 cites W1987529590 @default.
- W2108687168 cites W1994538177 @default.
- W2108687168 cites W2009477800 @default.
- W2108687168 cites W2012851588 @default.
- W2108687168 cites W2020478228 @default.
- W2108687168 cites W2021334232 @default.
- W2108687168 cites W2026966019 @default.
- W2108687168 cites W2029105688 @default.
- W2108687168 cites W2031782091 @default.
- W2108687168 cites W2035178592 @default.
- W2108687168 cites W2042804367 @default.
- W2108687168 cites W2050940689 @default.
- W2108687168 cites W2058959065 @default.
- W2108687168 cites W2063735869 @default.
- W2108687168 cites W2081021011 @default.
- W2108687168 cites W2082892141 @default.
- W2108687168 cites W2083974946 @default.
- W2108687168 cites W2084813194 @default.
- W2108687168 cites W2086896131 @default.
- W2108687168 cites W2087074238 @default.
- W2108687168 cites W2106469341 @default.
- W2108687168 cites W2110794492 @default.
- W2108687168 cites W2119180614 @default.
- W2108687168 cites W2122707179 @default.
- W2108687168 cites W2125707107 @default.
- W2108687168 cites W2125802235 @default.
- W2108687168 cites W2132694995 @default.
- W2108687168 cites W2155018859 @default.
- W2108687168 cites W2156796069 @default.
- W2108687168 cites W2168735502 @default.
- W2108687168 cites W2316005610 @default.
- W2108687168 doi "https://doi.org/10.1016/j.ultras.2013.01.010" @default.
- W2108687168 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23497805" @default.
- W2108687168 hasPublicationYear "2013" @default.
- W2108687168 type Work @default.
- W2108687168 sameAs 2108687168 @default.
- W2108687168 citedByCount "16" @default.
- W2108687168 countsByYear W21086871682014 @default.
- W2108687168 countsByYear W21086871682015 @default.
- W2108687168 countsByYear W21086871682016 @default.
- W2108687168 countsByYear W21086871682018 @default.
- W2108687168 countsByYear W21086871682019 @default.
- W2108687168 countsByYear W21086871682021 @default.
- W2108687168 countsByYear W21086871682023 @default.
- W2108687168 crossrefType "journal-article" @default.
- W2108687168 hasAuthorship W2108687168A5023982186 @default.
- W2108687168 hasAuthorship W2108687168A5033350741 @default.
- W2108687168 hasAuthorship W2108687168A5040855613 @default.
- W2108687168 hasAuthorship W2108687168A5053411065 @default.
- W2108687168 hasAuthorship W2108687168A5067125220 @default.
- W2108687168 hasAuthorship W2108687168A5086047305 @default.
- W2108687168 hasAuthorship W2108687168A5088330947 @default.
- W2108687168 hasConcept C120665830 @default.
- W2108687168 hasConcept C121099081 @default.
- W2108687168 hasConcept C121332964 @default.
- W2108687168 hasConcept C153294291 @default.
- W2108687168 hasConcept C171250308 @default.
- W2108687168 hasConcept C18903297 @default.
- W2108687168 hasConcept C192562407 @default.
- W2108687168 hasConcept C24890656 @default.
- W2108687168 hasConcept C2777924906 @default.
- W2108687168 hasConcept C2778415886 @default.
- W2108687168 hasConcept C2982854487 @default.
- W2108687168 hasConcept C56318395 @default.
- W2108687168 hasConcept C63662833 @default.
- W2108687168 hasConcept C8673954 @default.
- W2108687168 hasConcept C86803240 @default.
- W2108687168 hasConceptScore W2108687168C120665830 @default.
- W2108687168 hasConceptScore W2108687168C121099081 @default.
- W2108687168 hasConceptScore W2108687168C121332964 @default.
- W2108687168 hasConceptScore W2108687168C153294291 @default.
- W2108687168 hasConceptScore W2108687168C171250308 @default.
- W2108687168 hasConceptScore W2108687168C18903297 @default.
- W2108687168 hasConceptScore W2108687168C192562407 @default.
- W2108687168 hasConceptScore W2108687168C24890656 @default.
- W2108687168 hasConceptScore W2108687168C2777924906 @default.
- W2108687168 hasConceptScore W2108687168C2778415886 @default.
- W2108687168 hasConceptScore W2108687168C2982854487 @default.
- W2108687168 hasConceptScore W2108687168C56318395 @default.
- W2108687168 hasConceptScore W2108687168C63662833 @default.
- W2108687168 hasConceptScore W2108687168C8673954 @default.
- W2108687168 hasConceptScore W2108687168C86803240 @default.