Matches in SemOpenAlex for { <https://semopenalex.org/work/W2108732823> ?p ?o ?g. }
- W2108732823 endingPage "1123" @default.
- W2108732823 startingPage "1114" @default.
- W2108732823 abstract "The Atherosclerosis Risk in Communities (ARIC) algorithm is one of the most efficient instruments for the prediction of incident type 2 diabetes. Recently, it has been shown to predict another relevant cardiovascular (CV) risk factor, such as chronic kidney disease. To verify whether, in patients with erectile dysfunction (ED), the use of ARIC diabetes risk score might improve the efficacy in predicting major CV events of other CV risk algorithms specifically developed for the assessment of CV risk. A consecutive series of 2,437 men (mean age 52.5 ± 12.9 years) attending our outpatient clinic for sexual dysfunction was retrospectively studied. A subset of this sample (N = 1,687) was enrolled in a longitudinal study (mean follow‐up of 4.3 ± 2.6 years). The assessment of metabolic risk was evaluated with the ARIC algorithm. The assessment of CV risk was evaluated using the Progetto Cuore risk engine. In the cross‐sectional study, ARIC score was inversely related with testosterone levels, sexual functioning, and penile blood flow. When longitudinal sample was analyzed, higher baseline ARIC score significantly predicted major adverse cardiovascular event (MACE) even when subjects with diabetes mellitus at baseline were excluded from the analysis (hazard ratio = 1.522 [1.086–2.135]; P = 0.015 for trend). In addition, among subjects classified as “low risk” (CV risk <20% at 10 years corresponding to <9% at 4.3 years) by Progetto Cuore, a receiving operating curve (ROC) analysis for ARIC (vs. MACE) allowed the identification of a threshold of 0.22, which had a positive predictive value for 4.3‐year MACE of 9%. Applying the ARIC score (with a threshold of 0.22) to Progetto Cuore “low‐risk” subjects, we could classify as “at high risk” 89.8% of subjects with incident MACE vs. 79.6% with Progetto Cuore only. In patients with ED, identifying prediabetes, even with algorithms, predicts long‐term CV events." @default.
- W2108732823 created "2016-06-24" @default.
- W2108732823 creator A5000249976 @default.
- W2108732823 creator A5034592726 @default.
- W2108732823 creator A5049129057 @default.
- W2108732823 creator A5049759930 @default.
- W2108732823 creator A5056340385 @default.
- W2108732823 creator A5059413618 @default.
- W2108732823 creator A5059685674 @default.
- W2108732823 creator A5072038760 @default.
- W2108732823 date "2013-04-01" @default.
- W2108732823 modified "2023-10-01" @default.
- W2108732823 title "The Identification of Prediabetes Condition with ARIC Algorithm Predicts Long‐Term CV Events in Patients with Erectile Dysfunction" @default.
- W2108732823 cites W1503011998 @default.
- W2108732823 cites W1507911819 @default.
- W2108732823 cites W1526927233 @default.
- W2108732823 cites W1573981910 @default.
- W2108732823 cites W1606055391 @default.
- W2108732823 cites W1653327953 @default.
- W2108732823 cites W1691160972 @default.
- W2108732823 cites W1812695110 @default.
- W2108732823 cites W1855278889 @default.
- W2108732823 cites W1971113403 @default.
- W2108732823 cites W1983269691 @default.
- W2108732823 cites W1999270670 @default.
- W2108732823 cites W2007614950 @default.
- W2108732823 cites W2008035769 @default.
- W2108732823 cites W2012440832 @default.
- W2108732823 cites W2020292843 @default.
- W2108732823 cites W2022119612 @default.
- W2108732823 cites W2026303317 @default.
- W2108732823 cites W2031968478 @default.
- W2108732823 cites W2034440430 @default.
- W2108732823 cites W2047379219 @default.
- W2108732823 cites W2062498555 @default.
- W2108732823 cites W2082497254 @default.
- W2108732823 cites W2083901711 @default.
- W2108732823 cites W2090824142 @default.
- W2108732823 cites W2094050483 @default.
- W2108732823 cites W2098247759 @default.
- W2108732823 cites W2110664743 @default.
- W2108732823 cites W2115607452 @default.
- W2108732823 cites W2115699593 @default.
- W2108732823 cites W2117721095 @default.
- W2108732823 cites W2123404037 @default.
- W2108732823 cites W2123946565 @default.
- W2108732823 cites W2125468958 @default.
- W2108732823 cites W2127008375 @default.
- W2108732823 cites W2130151951 @default.
- W2108732823 cites W2139634859 @default.
- W2108732823 cites W2143849209 @default.
- W2108732823 cites W2149263243 @default.
- W2108732823 cites W2156593233 @default.
- W2108732823 cites W2158822657 @default.
- W2108732823 cites W2160915817 @default.
- W2108732823 cites W2162598076 @default.
- W2108732823 cites W2332951586 @default.
- W2108732823 cites W4214815596 @default.
- W2108732823 cites W4230627363 @default.
- W2108732823 cites W4234147305 @default.
- W2108732823 doi "https://doi.org/10.1111/jsm.12066" @default.
- W2108732823 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23347470" @default.
- W2108732823 hasPublicationYear "2013" @default.
- W2108732823 type Work @default.
- W2108732823 sameAs 2108732823 @default.
- W2108732823 citedByCount "24" @default.
- W2108732823 countsByYear W21087328232013 @default.
- W2108732823 countsByYear W21087328232014 @default.
- W2108732823 countsByYear W21087328232015 @default.
- W2108732823 countsByYear W21087328232016 @default.
- W2108732823 countsByYear W21087328232017 @default.
- W2108732823 countsByYear W21087328232019 @default.
- W2108732823 countsByYear W21087328232022 @default.
- W2108732823 countsByYear W21087328232023 @default.
- W2108732823 crossrefType "journal-article" @default.
- W2108732823 hasAuthorship W2108732823A5000249976 @default.
- W2108732823 hasAuthorship W2108732823A5034592726 @default.
- W2108732823 hasAuthorship W2108732823A5049129057 @default.
- W2108732823 hasAuthorship W2108732823A5049759930 @default.
- W2108732823 hasAuthorship W2108732823A5056340385 @default.
- W2108732823 hasAuthorship W2108732823A5059413618 @default.
- W2108732823 hasAuthorship W2108732823A5059685674 @default.
- W2108732823 hasAuthorship W2108732823A5072038760 @default.
- W2108732823 hasConcept C11413529 @default.
- W2108732823 hasConcept C126322002 @default.
- W2108732823 hasConcept C134018914 @default.
- W2108732823 hasConcept C207103383 @default.
- W2108732823 hasConcept C2779929075 @default.
- W2108732823 hasConcept C2780739214 @default.
- W2108732823 hasConcept C41008148 @default.
- W2108732823 hasConcept C44249647 @default.
- W2108732823 hasConcept C45393284 @default.
- W2108732823 hasConcept C500558357 @default.
- W2108732823 hasConcept C50382708 @default.
- W2108732823 hasConcept C50440223 @default.
- W2108732823 hasConcept C555293320 @default.
- W2108732823 hasConcept C71924100 @default.
- W2108732823 hasConcept C72563966 @default.