Matches in SemOpenAlex for { <https://semopenalex.org/work/W2108797761> ?p ?o ?g. }
- W2108797761 endingPage "2630" @default.
- W2108797761 startingPage "2616" @default.
- W2108797761 abstract "Motivated by the fractal-like behavior of natural images, we develop a smoothing technique that uses a regularization functional which is a fractional iterate of the Laplacian. This type of functional was initially introduced by Duchon for the approximation of nonuniformily sampled, multidimensional data. He proved that the general solution is a smoothing spline that is represented by a linear combination of radial basis functions (RBFs). Unfortunately, this is tedious to implement for images because of the poor conditioning of RBFs and their lack of decay. Here, we present a much more efficient method for the special case of a uniform grid. The key idea is to express Duchon's solution in a fractional polyharmonic B-spline basis that spans the same space as the RBFs. This allows us to derive an algorithm where the smoothing is performed by filtering in the Fourier domain. Next, we prove that the above smoothing spline can be optimally tuned to provide the MMSE estimation of a fractional Brownian field corrupted by white noise. This is a strong result that not only yields the best linear filter (Wiener solution), but also the optimal interpolation space, which is not bandlimited. It also suggests a way of using the noisy data to identify the optimal parameters (order of the spline and smoothing strength), which yields a fully automatic smoothing procedure. We evaluate the performance of our algorithm by comparing it against an oracle Wiener filter, which requires the knowledge of the true noiseless power spectrum of the signal. We find that our approach performs almost as well as the oracle solution over a wide range of conditions." @default.
- W2108797761 created "2016-06-24" @default.
- W2108797761 creator A5027830035 @default.
- W2108797761 creator A5062086864 @default.
- W2108797761 creator A5067267584 @default.
- W2108797761 date "2006-09-01" @default.
- W2108797761 modified "2023-10-04" @default.
- W2108797761 title "Polyharmonic smoothing splines and the multidimensional Wiener filtering of fractal-like signals" @default.
- W2108797761 cites W1490039160 @default.
- W2108797761 cites W1506809288 @default.
- W2108797761 cites W1510355813 @default.
- W2108797761 cites W1753871439 @default.
- W2108797761 cites W1969849531 @default.
- W2108797761 cites W1990472383 @default.
- W2108797761 cites W1991567646 @default.
- W2108797761 cites W1992720634 @default.
- W2108797761 cites W1996692737 @default.
- W2108797761 cites W2001697496 @default.
- W2108797761 cites W2016886155 @default.
- W2108797761 cites W2020999234 @default.
- W2108797761 cites W2021537669 @default.
- W2108797761 cites W2031753087 @default.
- W2108797761 cites W2034895238 @default.
- W2108797761 cites W2038862520 @default.
- W2108797761 cites W2040325046 @default.
- W2108797761 cites W2042755403 @default.
- W2108797761 cites W2046130948 @default.
- W2108797761 cites W2048209332 @default.
- W2108797761 cites W2053256111 @default.
- W2108797761 cites W2053648455 @default.
- W2108797761 cites W2056894411 @default.
- W2108797761 cites W2068179746 @default.
- W2108797761 cites W2069235103 @default.
- W2108797761 cites W2080744942 @default.
- W2108797761 cites W2081774672 @default.
- W2108797761 cites W2082586613 @default.
- W2108797761 cites W2083268403 @default.
- W2108797761 cites W2085877024 @default.
- W2108797761 cites W2094438648 @default.
- W2108797761 cites W2096086749 @default.
- W2108797761 cites W2098301339 @default.
- W2108797761 cites W2100115174 @default.
- W2108797761 cites W2103559027 @default.
- W2108797761 cites W2105910985 @default.
- W2108797761 cites W2108862142 @default.
- W2108797761 cites W2110858853 @default.
- W2108797761 cites W2113359099 @default.
- W2108797761 cites W2116436454 @default.
- W2108797761 cites W2129945880 @default.
- W2108797761 cites W2130859329 @default.
- W2108797761 cites W2142195632 @default.
- W2108797761 cites W2143022286 @default.
- W2108797761 cites W2146766088 @default.
- W2108797761 cites W2146842127 @default.
- W2108797761 cites W2148517583 @default.
- W2108797761 cites W2149846618 @default.
- W2108797761 cites W2150134853 @default.
- W2108797761 cites W2151514667 @default.
- W2108797761 cites W2154679219 @default.
- W2108797761 cites W2156263007 @default.
- W2108797761 cites W2158252006 @default.
- W2108797761 cites W2158270878 @default.
- W2108797761 cites W2165773639 @default.
- W2108797761 cites W2166887721 @default.
- W2108797761 cites W2313299119 @default.
- W2108797761 cites W2573715514 @default.
- W2108797761 cites W2801179766 @default.
- W2108797761 cites W2971002144 @default.
- W2108797761 cites W2983836991 @default.
- W2108797761 cites W3016175113 @default.
- W2108797761 cites W3134292042 @default.
- W2108797761 cites W3134834856 @default.
- W2108797761 cites W3148924112 @default.
- W2108797761 cites W436320942 @default.
- W2108797761 doi "https://doi.org/10.1109/tip.2006.877390" @default.
- W2108797761 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/16948307" @default.
- W2108797761 hasPublicationYear "2006" @default.
- W2108797761 type Work @default.
- W2108797761 sameAs 2108797761 @default.
- W2108797761 citedByCount "14" @default.
- W2108797761 countsByYear W21087977612015 @default.
- W2108797761 countsByYear W21087977612018 @default.
- W2108797761 countsByYear W21087977612020 @default.
- W2108797761 countsByYear W21087977612023 @default.
- W2108797761 crossrefType "journal-article" @default.
- W2108797761 hasAuthorship W2108797761A5027830035 @default.
- W2108797761 hasAuthorship W2108797761A5062086864 @default.
- W2108797761 hasAuthorship W2108797761A5067267584 @default.
- W2108797761 hasBestOaLocation W21087977612 @default.
- W2108797761 hasConcept C10390562 @default.
- W2108797761 hasConcept C105795698 @default.
- W2108797761 hasConcept C107457265 @default.
- W2108797761 hasConcept C11413529 @default.
- W2108797761 hasConcept C126255220 @default.
- W2108797761 hasConcept C127413603 @default.
- W2108797761 hasConcept C134306372 @default.
- W2108797761 hasConcept C18537770 @default.
- W2108797761 hasConcept C205203396 @default.