Matches in SemOpenAlex for { <https://semopenalex.org/work/W2108907664> ?p ?o ?g. }
- W2108907664 endingPage "820" @default.
- W2108907664 startingPage "797" @default.
- W2108907664 abstract "Regression density estimation is the problem of flexibly estimating a response distribution as a function of covariates. An important approach to regression density estimation uses finite mixture models and our article considers flexible mixtures of heteroscedastic regression (MHR) models where the response distribution is a normal mixture, with the component means, variances, and mixture weights all varying as a function of covariates. Our article develops fast variational approximation (VA) methods for inference. Our motivation is that alternative computationally intensive Markov chain Monte Carlo (MCMC) methods for fitting mixture models are difficult to apply when it is desired to fit models repeatedly in exploratory analysis and model choice. Our article makes three contributions. First, a VA for MHR models is described where the variational lower bound is in closed form. Second, the basic approximation can be improved by using stochastic approximation (SA) methods to perturb the initial solution to attain higher accuracy. Third, the advantages of our approach for model choice and evaluation compared with MCMC-based approaches are illustrated. These advantages are particularly compelling for time series data where repeated refitting for one-step-ahead prediction in model choice and diagnostics and in rolling-window computations is very common. Supplementary materials for the article are available online." @default.
- W2108907664 created "2016-06-24" @default.
- W2108907664 creator A5005139027 @default.
- W2108907664 creator A5050445437 @default.
- W2108907664 creator A5051693933 @default.
- W2108907664 creator A5074360344 @default.
- W2108907664 date "2012-07-01" @default.
- W2108907664 modified "2023-10-03" @default.
- W2108907664 title "Regression Density Estimation With Variational Methods and Stochastic Approximation" @default.
- W2108907664 cites W1563188147 @default.
- W2108907664 cites W1581352608 @default.
- W2108907664 cites W1966129222 @default.
- W2108907664 cites W1967611219 @default.
- W2108907664 cites W1969907345 @default.
- W2108907664 cites W1975427826 @default.
- W2108907664 cites W1981796042 @default.
- W2108907664 cites W1994616650 @default.
- W2108907664 cites W2017791169 @default.
- W2108907664 cites W2024589952 @default.
- W2108907664 cites W2025653905 @default.
- W2108907664 cites W2031988475 @default.
- W2108907664 cites W203276351 @default.
- W2108907664 cites W2057765075 @default.
- W2108907664 cites W2059424427 @default.
- W2108907664 cites W2060624359 @default.
- W2108907664 cites W2063188271 @default.
- W2108907664 cites W2102696581 @default.
- W2108907664 cites W2108868276 @default.
- W2108907664 cites W2119301009 @default.
- W2108907664 cites W2122247652 @default.
- W2108907664 cites W2125107816 @default.
- W2108907664 cites W2126626202 @default.
- W2108907664 cites W2127498532 @default.
- W2108907664 cites W2147503863 @default.
- W2108907664 cites W2150884987 @default.
- W2108907664 cites W2152027663 @default.
- W2108907664 cites W2160255741 @default.
- W2108907664 cites W2169026875 @default.
- W2108907664 cites W3122012037 @default.
- W2108907664 cites W3122987281 @default.
- W2108907664 cites W3124028581 @default.
- W2108907664 cites W3125810650 @default.
- W2108907664 cites W4301861531 @default.
- W2108907664 doi "https://doi.org/10.1080/10618600.2012.679897" @default.
- W2108907664 hasPublicationYear "2012" @default.
- W2108907664 type Work @default.
- W2108907664 sameAs 2108907664 @default.
- W2108907664 citedByCount "38" @default.
- W2108907664 countsByYear W21089076642013 @default.
- W2108907664 countsByYear W21089076642014 @default.
- W2108907664 countsByYear W21089076642015 @default.
- W2108907664 countsByYear W21089076642017 @default.
- W2108907664 countsByYear W21089076642018 @default.
- W2108907664 countsByYear W21089076642019 @default.
- W2108907664 countsByYear W21089076642020 @default.
- W2108907664 countsByYear W21089076642021 @default.
- W2108907664 countsByYear W21089076642023 @default.
- W2108907664 crossrefType "journal-article" @default.
- W2108907664 hasAuthorship W2108907664A5005139027 @default.
- W2108907664 hasAuthorship W2108907664A5050445437 @default.
- W2108907664 hasAuthorship W2108907664A5051693933 @default.
- W2108907664 hasAuthorship W2108907664A5074360344 @default.
- W2108907664 hasBestOaLocation W21089076642 @default.
- W2108907664 hasConcept C101104100 @default.
- W2108907664 hasConcept C105795698 @default.
- W2108907664 hasConcept C111350023 @default.
- W2108907664 hasConcept C119043178 @default.
- W2108907664 hasConcept C126255220 @default.
- W2108907664 hasConcept C154945302 @default.
- W2108907664 hasConcept C19499675 @default.
- W2108907664 hasConcept C2776214188 @default.
- W2108907664 hasConcept C28826006 @default.
- W2108907664 hasConcept C33923547 @default.
- W2108907664 hasConcept C41008148 @default.
- W2108907664 hasConceptScore W2108907664C101104100 @default.
- W2108907664 hasConceptScore W2108907664C105795698 @default.
- W2108907664 hasConceptScore W2108907664C111350023 @default.
- W2108907664 hasConceptScore W2108907664C119043178 @default.
- W2108907664 hasConceptScore W2108907664C126255220 @default.
- W2108907664 hasConceptScore W2108907664C154945302 @default.
- W2108907664 hasConceptScore W2108907664C19499675 @default.
- W2108907664 hasConceptScore W2108907664C2776214188 @default.
- W2108907664 hasConceptScore W2108907664C28826006 @default.
- W2108907664 hasConceptScore W2108907664C33923547 @default.
- W2108907664 hasConceptScore W2108907664C41008148 @default.
- W2108907664 hasIssue "3" @default.
- W2108907664 hasLocation W21089076641 @default.
- W2108907664 hasLocation W21089076642 @default.
- W2108907664 hasLocation W21089076643 @default.
- W2108907664 hasOpenAccess W2108907664 @default.
- W2108907664 hasPrimaryLocation W21089076641 @default.
- W2108907664 hasRelatedWork W1486199075 @default.
- W2108907664 hasRelatedWork W1664416131 @default.
- W2108907664 hasRelatedWork W2003630574 @default.
- W2108907664 hasRelatedWork W2549470523 @default.
- W2108907664 hasRelatedWork W2889547404 @default.
- W2108907664 hasRelatedWork W2914254885 @default.
- W2108907664 hasRelatedWork W2948895238 @default.