Matches in SemOpenAlex for { <https://semopenalex.org/work/W2108907718> ?p ?o ?g. }
- W2108907718 endingPage "866" @default.
- W2108907718 startingPage "845" @default.
- W2108907718 abstract "A process-based leaf gas exchange model for C3 plants was developed which specifically describes the effects observed along light gradients of shifting nitrogen investment in carboxylation and bioenergetics and modified leaf thickness due to altered stacking of photosynthetic units. The model was parametrized for the late-successional, shade-tolerant deciduous species Acer saccharum Marsh. The specific activity of ribulose-1,5-bisphosphate carboxylase (Rubisco) and the maximum photosynthetic electron transport rate per unit cytochrome f (cyt f) were used as indices that vary proportionally with nitrogen investment in the capacities for carboxylation and electron transport. Rubisco and cyt f per unit leaf area are related in the model to leaf dry mass per area (MA), leaf nitrogen content per unit leaf dry mass (Nm), and partitioning coefficients for leaf nitrogen in Rubisco (PR) and in bioenergetics (PB). These partitioning coefficients are estimated from characteristic response curves of photosynthesis along with information on lear structure and composition. While PR and PB determine the light-saturated value of photosynthesis, the fraction of leaf nitrogen in thylakoid light-harvesting components (PL) and the ratio of leaf chlorophyll to leaf nitrogen invested in light harvesting (CB), which is dependent on thylakoid stoichiometry, determine the initial photosynthetic light utilization efficiency in the model. Carbon loss due to mitochondrial respiration, which also changes along light gradients, was considered to vary in proportion with carboxylation capacity. Key model parameters - Nm, PR, PB, PLCB and stomatal sensitivity with respect to changes in net photosynthesis (Gr) – were examined as a function of MA, which is linearly related to irradiance during growth of the leaves. The results of the analysis applied to A. saccharum indicate that PB and PR increase, and Gf, PL and CB decrease with increasing MA. As a result of these effects of irradiaiice on nitrogen partitioning, the slope of the light-saturated net photosynthesis rate per unit leaf dry mass (Ammax) versus Nm relationship increased with increasing growth irradiance in mid-season. Furthermore, the nitrogen partitioning coefficients as well as the slopes of Ammax versus Nm were independent of season, except during development of the leaf photosynthetic apparatus. Simulations revealed that the acclimation to high light increased Ammax by 40% with respect to the low light regime. However, light-saturated photosynthesis per leaf area (Aamax) varied 3-fold between these habitats, suggesting that the acclimation to high light was dominated by adjustments in leaf anatomy (Aamax=AmmaxMA) rather than in foliar biochemistry. This differed from adaptation to low light, where the alterations in foliar biochemistry were predicted to be at least as important as anatomical modifications. Due to the light-related accumulation of photosynthetic mass per unit area, Aamax depended on MA and leaf nitrogen per unit area (Na). However, Na conceals the variation in both MA and Nm (Na=NmMA), and prevents clear separation of anatomical adjustments in foliage structure and biochemical modifications in foliar composition. Given the large seasonal and site nutrient availability-related variation in Nm, and the influences of growth irradiance on nitrogen partitioning, the relationship between Aamax and Na is universal neither in time nor in space and in natural canopies at mid-season is mostly driven by variability in MA. Thus, we conclude that analyses of the effects of nitrogen investments on potential carbon acquisition should use mass-based rather than area-based expressions." @default.
- W2108907718 created "2016-06-24" @default.
- W2108907718 creator A5023326297 @default.
- W2108907718 creator A5075833867 @default.
- W2108907718 date "1997-07-01" @default.
- W2108907718 modified "2023-10-16" @default.
- W2108907718 title "A model separating leaf structural and physiological effects on carbon gain along light gradients for the shade-tolerant species Acer saccharum" @default.
- W2108907718 cites W101890865 @default.
- W2108907718 cites W1209269186 @default.
- W2108907718 cites W1554122050 @default.
- W2108907718 cites W1569391783 @default.
- W2108907718 cites W1594394486 @default.
- W2108907718 cites W1885593722 @default.
- W2108907718 cites W1897128093 @default.
- W2108907718 cites W1967830329 @default.
- W2108907718 cites W1967960973 @default.
- W2108907718 cites W1969571365 @default.
- W2108907718 cites W1970198112 @default.
- W2108907718 cites W1970512412 @default.
- W2108907718 cites W1971018951 @default.
- W2108907718 cites W1972557367 @default.
- W2108907718 cites W1977079987 @default.
- W2108907718 cites W1978085523 @default.
- W2108907718 cites W1978404331 @default.
- W2108907718 cites W1980740479 @default.
- W2108907718 cites W1980798451 @default.
- W2108907718 cites W1981894496 @default.
- W2108907718 cites W1983325908 @default.
- W2108907718 cites W1983821125 @default.
- W2108907718 cites W1983871130 @default.
- W2108907718 cites W1985829997 @default.
- W2108907718 cites W1989473086 @default.
- W2108907718 cites W1989687654 @default.
- W2108907718 cites W1990090029 @default.
- W2108907718 cites W1990690163 @default.
- W2108907718 cites W1992366970 @default.
- W2108907718 cites W1992535828 @default.
- W2108907718 cites W1994889176 @default.
- W2108907718 cites W1996860865 @default.
- W2108907718 cites W1997185770 @default.
- W2108907718 cites W1998741769 @default.
- W2108907718 cites W2002229085 @default.
- W2108907718 cites W2005989642 @default.
- W2108907718 cites W2007455538 @default.
- W2108907718 cites W2009854969 @default.
- W2108907718 cites W2011515781 @default.
- W2108907718 cites W2013198163 @default.
- W2108907718 cites W2015050017 @default.
- W2108907718 cites W2020752051 @default.
- W2108907718 cites W2022257873 @default.
- W2108907718 cites W2025309265 @default.
- W2108907718 cites W2028178010 @default.
- W2108907718 cites W2028665592 @default.
- W2108907718 cites W2029074727 @default.
- W2108907718 cites W2031213635 @default.
- W2108907718 cites W2034453853 @default.
- W2108907718 cites W2035839076 @default.
- W2108907718 cites W2046857879 @default.
- W2108907718 cites W2049020339 @default.
- W2108907718 cites W2049796874 @default.
- W2108907718 cites W2059354705 @default.
- W2108907718 cites W2063256031 @default.
- W2108907718 cites W2064729692 @default.
- W2108907718 cites W2067649092 @default.
- W2108907718 cites W2068129985 @default.
- W2108907718 cites W2074568780 @default.
- W2108907718 cites W2076306922 @default.
- W2108907718 cites W2076768616 @default.
- W2108907718 cites W2077673910 @default.
- W2108907718 cites W2081637547 @default.
- W2108907718 cites W2083222940 @default.
- W2108907718 cites W2083415155 @default.
- W2108907718 cites W2088263842 @default.
- W2108907718 cites W2090719142 @default.
- W2108907718 cites W2092585274 @default.
- W2108907718 cites W2093846586 @default.
- W2108907718 cites W2096327547 @default.
- W2108907718 cites W2096466966 @default.
- W2108907718 cites W2101917987 @default.
- W2108907718 cites W2111330963 @default.
- W2108907718 cites W2125077908 @default.
- W2108907718 cites W2126473364 @default.
- W2108907718 cites W2128815662 @default.
- W2108907718 cites W2132930776 @default.
- W2108907718 cites W2136726359 @default.
- W2108907718 cites W2139710557 @default.
- W2108907718 cites W2141123154 @default.
- W2108907718 cites W2142215695 @default.
- W2108907718 cites W2145779780 @default.
- W2108907718 cites W2147830414 @default.
- W2108907718 cites W2148176917 @default.
- W2108907718 cites W2155059734 @default.
- W2108907718 cites W2156782579 @default.
- W2108907718 cites W2156784274 @default.
- W2108907718 cites W2156908792 @default.
- W2108907718 cites W2156933331 @default.
- W2108907718 cites W2157440421 @default.
- W2108907718 cites W2158869682 @default.