Matches in SemOpenAlex for { <https://semopenalex.org/work/W2108933868> ?p ?o ?g. }
- W2108933868 endingPage "1212" @default.
- W2108933868 startingPage "1202" @default.
- W2108933868 abstract "A community of researchers report the lessons learned from applying 44 algorithms to predict drug sensitivity in cancer cell lines using genomic, epigenetic and proteomic datasets Predicting the best treatment strategy from genomic information is a core goal of precision medicine. Here we focus on predicting drug response based on a cohort of genomic, epigenomic and proteomic profiling data sets measured in human breast cancer cell lines. Through a collaborative effort between the National Cancer Institute (NCI) and the Dialogue on Reverse Engineering Assessment and Methods (DREAM) project, we analyzed a total of 44 drug sensitivity prediction algorithms. The top-performing approaches modeled nonlinear relationships and incorporated biological pathway information. We found that gene expression microarrays consistently provided the best predictive power of the individual profiling data sets; however, performance was increased by including multiple, independent data sets. We discuss the innovations underlying the top-performing methodology, Bayesian multitask MKL, and we provide detailed descriptions of all methods. This study establishes benchmarks for drug sensitivity prediction and identifies approaches that can be leveraged for the development of new methods." @default.
- W2108933868 created "2016-06-24" @default.
- W2108933868 creator A5019591004 @default.
- W2108933868 date "2014-06-01" @default.
- W2108933868 modified "2023-10-06" @default.
- W2108933868 title "A community effort to assess and improve drug sensitivity prediction algorithms" @default.
- W2108933868 cites W1510073064 @default.
- W2108933868 cites W1967902354 @default.
- W2108933868 cites W1979946545 @default.
- W2108933868 cites W1983538153 @default.
- W2108933868 cites W1999025555 @default.
- W2108933868 cites W2005895632 @default.
- W2108933868 cites W2010457001 @default.
- W2108933868 cites W2033194905 @default.
- W2108933868 cites W2042851051 @default.
- W2108933868 cites W2043398720 @default.
- W2108933868 cites W2057559260 @default.
- W2108933868 cites W2058736322 @default.
- W2108933868 cites W2066122607 @default.
- W2108933868 cites W2078448804 @default.
- W2108933868 cites W2087312216 @default.
- W2108933868 cites W2096283457 @default.
- W2108933868 cites W2100714130 @default.
- W2108933868 cites W2108068107 @default.
- W2108933868 cites W2109384743 @default.
- W2108933868 cites W2116802246 @default.
- W2108933868 cites W2117692326 @default.
- W2108933868 cites W2121604817 @default.
- W2108933868 cites W2121906867 @default.
- W2108933868 cites W2125789330 @default.
- W2108933868 cites W2126983941 @default.
- W2108933868 cites W2128985829 @default.
- W2108933868 cites W2129860849 @default.
- W2108933868 cites W2130410032 @default.
- W2108933868 cites W2131994307 @default.
- W2108933868 cites W2134672574 @default.
- W2108933868 cites W2136959508 @default.
- W2108933868 cites W2140593657 @default.
- W2108933868 cites W2142739240 @default.
- W2108933868 cites W2143231467 @default.
- W2108933868 cites W2150926228 @default.
- W2108933868 cites W2155208683 @default.
- W2108933868 cites W2157012805 @default.
- W2108933868 cites W2160164696 @default.
- W2108933868 cites W2162946128 @default.
- W2108933868 cites W2168841715 @default.
- W2108933868 cites W2911964244 @default.
- W2108933868 cites W2913340405 @default.
- W2108933868 cites W3175417087 @default.
- W2108933868 cites W4238448376 @default.
- W2108933868 cites W4294216483 @default.
- W2108933868 cites W4294541781 @default.
- W2108933868 doi "https://doi.org/10.1038/nbt.2877" @default.
- W2108933868 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4547623" @default.
- W2108933868 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24880487" @default.
- W2108933868 hasPublicationYear "2014" @default.
- W2108933868 type Work @default.
- W2108933868 sameAs 2108933868 @default.
- W2108933868 citedByCount "622" @default.
- W2108933868 countsByYear W21089338682014 @default.
- W2108933868 countsByYear W21089338682015 @default.
- W2108933868 countsByYear W21089338682016 @default.
- W2108933868 countsByYear W21089338682017 @default.
- W2108933868 countsByYear W21089338682018 @default.
- W2108933868 countsByYear W21089338682019 @default.
- W2108933868 countsByYear W21089338682020 @default.
- W2108933868 countsByYear W21089338682021 @default.
- W2108933868 countsByYear W21089338682022 @default.
- W2108933868 countsByYear W21089338682023 @default.
- W2108933868 crossrefType "journal-article" @default.
- W2108933868 hasAuthorship W2108933868A5019591004 @default.
- W2108933868 hasBestOaLocation W21089338681 @default.
- W2108933868 hasConcept C104317684 @default.
- W2108933868 hasConcept C111919701 @default.
- W2108933868 hasConcept C119857082 @default.
- W2108933868 hasConcept C121912465 @default.
- W2108933868 hasConcept C124101348 @default.
- W2108933868 hasConcept C150194340 @default.
- W2108933868 hasConcept C154945302 @default.
- W2108933868 hasConcept C163763905 @default.
- W2108933868 hasConcept C187191949 @default.
- W2108933868 hasConcept C190727270 @default.
- W2108933868 hasConcept C2780035454 @default.
- W2108933868 hasConcept C2994119904 @default.
- W2108933868 hasConcept C41008148 @default.
- W2108933868 hasConcept C54355233 @default.
- W2108933868 hasConcept C55493867 @default.
- W2108933868 hasConcept C70721500 @default.
- W2108933868 hasConcept C86803240 @default.
- W2108933868 hasConcept C98274493 @default.
- W2108933868 hasConceptScore W2108933868C104317684 @default.
- W2108933868 hasConceptScore W2108933868C111919701 @default.
- W2108933868 hasConceptScore W2108933868C119857082 @default.
- W2108933868 hasConceptScore W2108933868C121912465 @default.
- W2108933868 hasConceptScore W2108933868C124101348 @default.
- W2108933868 hasConceptScore W2108933868C150194340 @default.
- W2108933868 hasConceptScore W2108933868C154945302 @default.
- W2108933868 hasConceptScore W2108933868C163763905 @default.