Matches in SemOpenAlex for { <https://semopenalex.org/work/W2109009695> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2109009695 endingPage "8050" @default.
- W2109009695 startingPage "8033" @default.
- W2109009695 abstract "Let <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=application/x-tex>A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a Banach algebra, <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper X> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=application/x-tex>X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a closed subspace of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A Superscript asterisk> <mml:semantics> <mml:msup> <mml:mi>A</mml:mi> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msup> <mml:annotation encoding=application/x-tex>A^*</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper Y> <mml:semantics> <mml:mi>Y</mml:mi> <mml:annotation encoding=application/x-tex>Y</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a dual Banach space with predual <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper Y Subscript asterisk> <mml:semantics> <mml:msub> <mml:mi>Y</mml:mi> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msub> <mml:annotation encoding=application/x-tex>Y_*</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=pi> <mml:semantics> <mml:mi>π<!-- π --></mml:mi> <mml:annotation encoding=application/x-tex>pi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a continuous representation of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=application/x-tex>A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper Y> <mml:semantics> <mml:mi>Y</mml:mi> <mml:annotation encoding=application/x-tex>Y</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We call <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=pi> <mml:semantics> <mml:mi>π<!-- π --></mml:mi> <mml:annotation encoding=application/x-tex>pi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> subordinate to <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper X> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=application/x-tex>X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> if each coordinate function <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=pi Subscript y comma lamda Baseline element-of upper X> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>π<!-- π --></mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>y</mml:mi> <mml:mo>,</mml:mo> <mml:mi>λ<!-- λ --></mml:mi> </mml:mrow> </mml:msub> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mi>X</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>pi _{y,lambda }in X</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, for all <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=y element-of upper Y comma lamda element-of upper Y Subscript asterisk Baseline> <mml:semantics> <mml:mrow> <mml:mi>y</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mi>Y</mml:mi> <mml:mo>,</mml:mo> <mml:mi>λ<!-- λ --></mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msub> <mml:mi>Y</mml:mi> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msub> </mml:mrow> <mml:annotation encoding=application/x-tex>yin Y, lambda in Y_*</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. If <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper X> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=application/x-tex>X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is topologically left (right) introverted and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper Y> <mml:semantics> <mml:mi>Y</mml:mi> <mml:annotation encoding=application/x-tex>Y</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is reflexive, we show the existence of a natural bijection between continuous representations of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=application/x-tex>A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper Y> <mml:semantics> <mml:mi>Y</mml:mi> <mml:annotation encoding=application/x-tex>Y</mml:annotation> </mml:semantics> </mml:math> </inline-formula> subordinate to <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper X> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=application/x-tex>X</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and normal representations of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper X Superscript asterisk> <mml:semantics> <mml:msup> <mml:mi>X</mml:mi> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msup> <mml:annotation encoding=application/x-tex>X^*</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper Y> <mml:semantics> <mml:mi>Y</mml:mi> <mml:annotation encoding=application/x-tex>Y</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We show that if <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=application/x-tex>A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has a bounded approximate identity, then every weakly almost periodic functional on <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=application/x-tex>A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a coordinate function of a continuous representation of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=application/x-tex>A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> subordinate to <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper W upper A upper P left-parenthesis upper A right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>W</mml:mi> <mml:mi>A</mml:mi> <mml:mi>P</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>A</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>WAP(A)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We show that a function <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=f> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding=application/x-tex>f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on a locally compact group <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=application/x-tex>G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is left uniformly continuous if and only if it is the coordinate function of the conjugate representation of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper L Superscript 1 Baseline left-parenthesis upper G right-parenthesis> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:mo stretchy=false>(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>L^1(G)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, associated to some unitary representation of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=application/x-tex>G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We generalize the latter result to an arbitrary Banach algebra with bounded right approximate identity. We prove the functionals in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper L upper U upper C left-parenthesis upper A right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>L</mml:mi> <mml:mi>U</mml:mi> <mml:mi>C</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>A</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>LUC(A)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are all coordinate functions of some norm continuous representation of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=application/x-tex>A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on a dual Banach space." @default.
- W2109009695 created "2016-06-24" @default.
- W2109009695 creator A5037889487 @default.
- W2109009695 creator A5045783929 @default.
- W2109009695 creator A5087063369 @default.
- W2109009695 date "2015-04-24" @default.
- W2109009695 modified "2023-09-27" @default.
- W2109009695 title "Representations of Banach algebras subordinate to topologically introverted spaces" @default.
- W2109009695 cites W1035906717 @default.
- W2109009695 cites W1894870131 @default.
- W2109009695 cites W1967544089 @default.
- W2109009695 cites W1976251926 @default.
- W2109009695 cites W2000682115 @default.
- W2109009695 cites W2008379630 @default.
- W2109009695 cites W2012572371 @default.
- W2109009695 cites W2034606919 @default.
- W2109009695 cites W2049182063 @default.
- W2109009695 cites W2055396109 @default.
- W2109009695 cites W2057226001 @default.
- W2109009695 cites W2063314199 @default.
- W2109009695 cites W2067505364 @default.
- W2109009695 cites W2074290328 @default.
- W2109009695 cites W2085251300 @default.
- W2109009695 cites W2089169620 @default.
- W2109009695 cites W2107503272 @default.
- W2109009695 cites W2108244136 @default.
- W2109009695 cites W212161842 @default.
- W2109009695 cites W2147825462 @default.
- W2109009695 cites W2171637978 @default.
- W2109009695 cites W283650435 @default.
- W2109009695 cites W2963651946 @default.
- W2109009695 cites W4229923956 @default.
- W2109009695 cites W4234179926 @default.
- W2109009695 cites W4249935274 @default.
- W2109009695 cites W4251387071 @default.
- W2109009695 cites W4251462314 @default.
- W2109009695 cites W620977368 @default.
- W2109009695 doi "https://doi.org/10.1090/tran/6435" @default.
- W2109009695 hasPublicationYear "2015" @default.
- W2109009695 type Work @default.
- W2109009695 sameAs 2109009695 @default.
- W2109009695 citedByCount "2" @default.
- W2109009695 countsByYear W21090096952014 @default.
- W2109009695 countsByYear W21090096952019 @default.
- W2109009695 crossrefType "journal-article" @default.
- W2109009695 hasAuthorship W2109009695A5037889487 @default.
- W2109009695 hasAuthorship W2109009695A5045783929 @default.
- W2109009695 hasAuthorship W2109009695A5087063369 @default.
- W2109009695 hasBestOaLocation W21090096951 @default.
- W2109009695 hasConcept C11413529 @default.
- W2109009695 hasConcept C154945302 @default.
- W2109009695 hasConcept C18903297 @default.
- W2109009695 hasConcept C2776321320 @default.
- W2109009695 hasConcept C2777299769 @default.
- W2109009695 hasConcept C33923547 @default.
- W2109009695 hasConcept C41008148 @default.
- W2109009695 hasConcept C77088390 @default.
- W2109009695 hasConcept C86803240 @default.
- W2109009695 hasConceptScore W2109009695C11413529 @default.
- W2109009695 hasConceptScore W2109009695C154945302 @default.
- W2109009695 hasConceptScore W2109009695C18903297 @default.
- W2109009695 hasConceptScore W2109009695C2776321320 @default.
- W2109009695 hasConceptScore W2109009695C2777299769 @default.
- W2109009695 hasConceptScore W2109009695C33923547 @default.
- W2109009695 hasConceptScore W2109009695C41008148 @default.
- W2109009695 hasConceptScore W2109009695C77088390 @default.
- W2109009695 hasConceptScore W2109009695C86803240 @default.
- W2109009695 hasIssue "11" @default.
- W2109009695 hasLocation W21090096951 @default.
- W2109009695 hasOpenAccess W2109009695 @default.
- W2109009695 hasPrimaryLocation W21090096951 @default.
- W2109009695 hasRelatedWork W151193258 @default.
- W2109009695 hasRelatedWork W1529400504 @default.
- W2109009695 hasRelatedWork W1607472309 @default.
- W2109009695 hasRelatedWork W1871911958 @default.
- W2109009695 hasRelatedWork W1892467659 @default.
- W2109009695 hasRelatedWork W2123357356 @default.
- W2109009695 hasRelatedWork W2349865494 @default.
- W2109009695 hasRelatedWork W2808586768 @default.
- W2109009695 hasRelatedWork W2998403542 @default.
- W2109009695 hasRelatedWork W3101673024 @default.
- W2109009695 hasVolume "367" @default.
- W2109009695 isParatext "false" @default.
- W2109009695 isRetracted "false" @default.
- W2109009695 magId "2109009695" @default.
- W2109009695 workType "article" @default.