Matches in SemOpenAlex for { <https://semopenalex.org/work/W2109063381> ?p ?o ?g. }
- W2109063381 abstract "Optimizing the use of lignocellulosic biomass as the feedstock for renewable energy production is currently being developed globally. Biomass is a complex mixture of cellulose, hemicelluloses, lignins, extractives, and proteins; as well as inorganic salts. Cell wall compositional analysis for biomass characterization is laborious and time consuming. In order to characterize biomass fast and efficiently, several high through-put technologies have been successfully developed. Among them, near infrared spectroscopy (NIR) and pyrolysis-molecular beam mass spectrometry (Py-mbms) are complementary tools and capable of evaluating a large number of raw or modified biomass in a short period of time. NIR shows vibrations associated with specific chemical structures whereas Py-mbms depicts the full range of fragments from the decomposition of biomass. Both NIR vibrations and Py-mbms peaks are assigned to possible chemical functional groups and molecular structures. They provide complementary information of chemical insight of biomaterials. However, it is challenging to interpret the informative results because of the large amount of overlapping bands or decomposition fragments contained in the spectra. In order to improve the efficiency of data analysis, multivariate analysis tools have been adapted to define the significant correlations among data variables, so that the large number of bands/peaks could be replaced by a small number of reconstructed variables representing original variation. Reconstructed data variables are used for sample comparison (principal component analysis) and for building regression models (partial least square regression) between biomass chemical structures and properties of interests. In this review, the important biomass chemical structures measured by NIR and Py-mbms are summarized. The advantages and disadvantages of conventional data analysis methods and multivariate data analysis methods are introduced, compared and evaluated. This review aims to serve as a guide for choosing the most effective data analysis methods for NIR and Py-mbms characterization of biomass." @default.
- W2109063381 created "2016-06-24" @default.
- W2109063381 creator A5006644300 @default.
- W2109063381 creator A5032739902 @default.
- W2109063381 creator A5054441428 @default.
- W2109063381 creator A5059281824 @default.
- W2109063381 creator A5079852321 @default.
- W2109063381 date "2014-08-07" @default.
- W2109063381 modified "2023-10-16" @default.
- W2109063381 title "NIR and Py-mbms coupled with multivariate data analysis as a high-throughput biomass characterization technique: a review" @default.
- W2109063381 cites W138177392 @default.
- W2109063381 cites W1535216236 @default.
- W2109063381 cites W159704088 @default.
- W2109063381 cites W1605779969 @default.
- W2109063381 cites W1967246569 @default.
- W2109063381 cites W1977426050 @default.
- W2109063381 cites W1982384168 @default.
- W2109063381 cites W1983206400 @default.
- W2109063381 cites W1992547423 @default.
- W2109063381 cites W1995525109 @default.
- W2109063381 cites W2005291574 @default.
- W2109063381 cites W2008592976 @default.
- W2109063381 cites W2010685428 @default.
- W2109063381 cites W2016051530 @default.
- W2109063381 cites W2017274545 @default.
- W2109063381 cites W2023160186 @default.
- W2109063381 cites W2024394347 @default.
- W2109063381 cites W2025356192 @default.
- W2109063381 cites W2025553558 @default.
- W2109063381 cites W2027543418 @default.
- W2109063381 cites W2035994166 @default.
- W2109063381 cites W2039385541 @default.
- W2109063381 cites W2040762444 @default.
- W2109063381 cites W2047566071 @default.
- W2109063381 cites W2048737144 @default.
- W2109063381 cites W2054652180 @default.
- W2109063381 cites W2054972455 @default.
- W2109063381 cites W2056811494 @default.
- W2109063381 cites W2059693773 @default.
- W2109063381 cites W2063725297 @default.
- W2109063381 cites W2064018214 @default.
- W2109063381 cites W2065746048 @default.
- W2109063381 cites W2074701976 @default.
- W2109063381 cites W2076633301 @default.
- W2109063381 cites W2077676866 @default.
- W2109063381 cites W2081362555 @default.
- W2109063381 cites W2084422998 @default.
- W2109063381 cites W2088047594 @default.
- W2109063381 cites W2092541168 @default.
- W2109063381 cites W2094204669 @default.
- W2109063381 cites W2101576719 @default.
- W2109063381 cites W2104111318 @default.
- W2109063381 cites W2105503244 @default.
- W2109063381 cites W2108431165 @default.
- W2109063381 cites W2109606373 @default.
- W2109063381 cites W2118514297 @default.
- W2109063381 cites W2129208771 @default.
- W2109063381 cites W2136860646 @default.
- W2109063381 cites W2153825341 @default.
- W2109063381 cites W2156599219 @default.
- W2109063381 cites W2168420658 @default.
- W2109063381 cites W2313635558 @default.
- W2109063381 cites W4244060482 @default.
- W2109063381 cites W4376999569 @default.
- W2109063381 cites W74037523 @default.
- W2109063381 doi "https://doi.org/10.3389/fpls.2014.00388" @default.
- W2109063381 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4124520" @default.
- W2109063381 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25147552" @default.
- W2109063381 hasPublicationYear "2014" @default.
- W2109063381 type Work @default.
- W2109063381 sameAs 2109063381 @default.
- W2109063381 citedByCount "44" @default.
- W2109063381 countsByYear W21090633812015 @default.
- W2109063381 countsByYear W21090633812016 @default.
- W2109063381 countsByYear W21090633812017 @default.
- W2109063381 countsByYear W21090633812018 @default.
- W2109063381 countsByYear W21090633812019 @default.
- W2109063381 countsByYear W21090633812020 @default.
- W2109063381 countsByYear W21090633812021 @default.
- W2109063381 countsByYear W21090633812022 @default.
- W2109063381 countsByYear W21090633812023 @default.
- W2109063381 crossrefType "journal-article" @default.
- W2109063381 hasAuthorship W2109063381A5006644300 @default.
- W2109063381 hasAuthorship W2109063381A5032739902 @default.
- W2109063381 hasAuthorship W2109063381A5054441428 @default.
- W2109063381 hasAuthorship W2109063381A5059281824 @default.
- W2109063381 hasAuthorship W2109063381A5079852321 @default.
- W2109063381 hasBestOaLocation W21090633811 @default.
- W2109063381 hasConcept C105795698 @default.
- W2109063381 hasConcept C115540264 @default.
- W2109063381 hasConcept C154945302 @default.
- W2109063381 hasConcept C161584116 @default.
- W2109063381 hasConcept C178790620 @default.
- W2109063381 hasConcept C185592680 @default.
- W2109063381 hasConcept C186060115 @default.
- W2109063381 hasConcept C206139338 @default.
- W2109063381 hasConcept C27438332 @default.
- W2109063381 hasConcept C2778234585 @default.
- W2109063381 hasConcept C2779251873 @default.
- W2109063381 hasConcept C2781052789 @default.