Matches in SemOpenAlex for { <https://semopenalex.org/work/W2109091716> ?p ?o ?g. }
- W2109091716 endingPage "1156" @default.
- W2109091716 startingPage "1137" @default.
- W2109091716 abstract "The learning process in Boltzmann machines is computationally very expensive. The computational complexity of the exact algorithm is exponential in the number of neurons. We present a new approximate learning algorithm for Boltzmann machines, based on mean-field theory and the linear response theorem. The computational complexity of the algorithm is cubic in the number of neurons. In the absence of hidden units, we show how the weights can be directly computed from the fixed-point equation of the learning rules. Thus, in this case we do not need to use a gradient descent procedure for the learning process. We show that the solutions of this method are close to the optimal solutions and give a significant improvement when correlations play a significant role. Finally, we apply the method to a pattern completion task and show good performance for networks up to 100 neurons." @default.
- W2109091716 created "2016-06-24" @default.
- W2109091716 creator A5000844533 @default.
- W2109091716 creator A5050819882 @default.
- W2109091716 date "1998-07-01" @default.
- W2109091716 modified "2023-09-26" @default.
- W2109091716 title "Efficient Learning in Boltzmann Machines Using Linear Response Theory" @default.
- W2109091716 cites W1520448186 @default.
- W2109091716 cites W1976237789 @default.
- W2109091716 cites W1990755770 @default.
- W2109091716 cites W2003309277 @default.
- W2109091716 cites W2026799324 @default.
- W2109091716 cites W2042492924 @default.
- W2109091716 cites W2044589314 @default.
- W2109091716 cites W2046913730 @default.
- W2109091716 cites W2051719061 @default.
- W2109091716 cites W2093616568 @default.
- W2109091716 cites W2128566668 @default.
- W2109091716 cites W2130275019 @default.
- W2109091716 cites W2165810248 @default.
- W2109091716 cites W2167794538 @default.
- W2109091716 cites W2326203395 @default.
- W2109091716 cites W4253572625 @default.
- W2109091716 doi "https://doi.org/10.1162/089976698300017386" @default.
- W2109091716 hasPublicationYear "1998" @default.
- W2109091716 type Work @default.
- W2109091716 sameAs 2109091716 @default.
- W2109091716 citedByCount "175" @default.
- W2109091716 countsByYear W21090917162012 @default.
- W2109091716 countsByYear W21090917162013 @default.
- W2109091716 countsByYear W21090917162014 @default.
- W2109091716 countsByYear W21090917162015 @default.
- W2109091716 countsByYear W21090917162016 @default.
- W2109091716 countsByYear W21090917162017 @default.
- W2109091716 countsByYear W21090917162018 @default.
- W2109091716 countsByYear W21090917162019 @default.
- W2109091716 countsByYear W21090917162020 @default.
- W2109091716 countsByYear W21090917162021 @default.
- W2109091716 countsByYear W21090917162022 @default.
- W2109091716 countsByYear W21090917162023 @default.
- W2109091716 crossrefType "journal-article" @default.
- W2109091716 hasAuthorship W2109091716A5000844533 @default.
- W2109091716 hasAuthorship W2109091716A5050819882 @default.
- W2109091716 hasBestOaLocation W21090917162 @default.
- W2109091716 hasConcept C111919701 @default.
- W2109091716 hasConcept C11413529 @default.
- W2109091716 hasConcept C121332964 @default.
- W2109091716 hasConcept C153258448 @default.
- W2109091716 hasConcept C154945302 @default.
- W2109091716 hasConcept C162324750 @default.
- W2109091716 hasConcept C165995430 @default.
- W2109091716 hasConcept C179799912 @default.
- W2109091716 hasConcept C187736073 @default.
- W2109091716 hasConcept C192576344 @default.
- W2109091716 hasConcept C199354608 @default.
- W2109091716 hasConcept C2524010 @default.
- W2109091716 hasConcept C2780451532 @default.
- W2109091716 hasConcept C28719098 @default.
- W2109091716 hasConcept C28826006 @default.
- W2109091716 hasConcept C33923547 @default.
- W2109091716 hasConcept C35304006 @default.
- W2109091716 hasConcept C41008148 @default.
- W2109091716 hasConcept C50644808 @default.
- W2109091716 hasConcept C62520636 @default.
- W2109091716 hasConcept C97355855 @default.
- W2109091716 hasConcept C98045186 @default.
- W2109091716 hasConceptScore W2109091716C111919701 @default.
- W2109091716 hasConceptScore W2109091716C11413529 @default.
- W2109091716 hasConceptScore W2109091716C121332964 @default.
- W2109091716 hasConceptScore W2109091716C153258448 @default.
- W2109091716 hasConceptScore W2109091716C154945302 @default.
- W2109091716 hasConceptScore W2109091716C162324750 @default.
- W2109091716 hasConceptScore W2109091716C165995430 @default.
- W2109091716 hasConceptScore W2109091716C179799912 @default.
- W2109091716 hasConceptScore W2109091716C187736073 @default.
- W2109091716 hasConceptScore W2109091716C192576344 @default.
- W2109091716 hasConceptScore W2109091716C199354608 @default.
- W2109091716 hasConceptScore W2109091716C2524010 @default.
- W2109091716 hasConceptScore W2109091716C2780451532 @default.
- W2109091716 hasConceptScore W2109091716C28719098 @default.
- W2109091716 hasConceptScore W2109091716C28826006 @default.
- W2109091716 hasConceptScore W2109091716C33923547 @default.
- W2109091716 hasConceptScore W2109091716C35304006 @default.
- W2109091716 hasConceptScore W2109091716C41008148 @default.
- W2109091716 hasConceptScore W2109091716C50644808 @default.
- W2109091716 hasConceptScore W2109091716C62520636 @default.
- W2109091716 hasConceptScore W2109091716C97355855 @default.
- W2109091716 hasConceptScore W2109091716C98045186 @default.
- W2109091716 hasIssue "5" @default.
- W2109091716 hasLocation W21090917161 @default.
- W2109091716 hasLocation W21090917162 @default.
- W2109091716 hasLocation W21090917163 @default.
- W2109091716 hasOpenAccess W2109091716 @default.
- W2109091716 hasPrimaryLocation W21090917161 @default.
- W2109091716 hasRelatedWork W2021581547 @default.
- W2109091716 hasRelatedWork W2028660548 @default.
- W2109091716 hasRelatedWork W2046913730 @default.
- W2109091716 hasRelatedWork W2047776774 @default.