Matches in SemOpenAlex for { <https://semopenalex.org/work/W2109128373> ?p ?o ?g. }
- W2109128373 endingPage "2999" @default.
- W2109128373 startingPage "2979" @default.
- W2109128373 abstract "One of the key steps towards predicting dimethyl sulphide (DMS) emissions to the atmosphere is to understand the production and fate of its precursor, dimethylsulphoniopropionate (DMSP). This study used the framework of a SF6-Lagrangian experiment lasting 6 days, to examine the production and turnover of particulate DMSP (DMSPp) within a developing phytoplankton bloom characterised by abundant Emiliania huxleyi. Detailed information on the composition of the phytoplankton community and literature-derived estimates of cell DMSP content were used to partition DMSPp between 6 taxonomic groups. E. huxleyi was estimated to contribute an average of only 16% and 9% of the DMSPp standing stocks in surface and subsurface layers of the water column, respectively. Other phototrophs, including non-lithed nanoflagellates and dinoflagellates, in particular Prorocentrum minimum, made up a substantial proportion of the DMSPp, especially in the subsurface layer. The Lagrangian approach allowed a direct estimate of the net production of DMSPp, chlorophyll a and the 6 phytoplankton taxonomic groups in the surface layer. The net specific accumulation rate of DMSPp was 0.129 day−1, equivalent to a net production of DMSPp over the 6 days of 37.3 nM averaged through the surface-layer depth. The net phytoplankton growth rate in terms of chlorophyll a was similar, at 0.108 day−1. However, not all the phytoplankton showed a net growth during the 6 days, indicating that only certain taxa were responsible for the increases in DMSP and chlorophyll a. A significant relationship between 14C primary production measurements and the potential production of DMSPp derived from dilution experiments was used to estimate an integrated ‘gross’ production and loss rate of DMSPp for the surface mixed layer. High DMSPp production rates were closely matched by high DMSPp loss rates. Ingestion by microzooplankton appeared to be the major cause of DMSPp loss, accounting for an average of 91% of the DMSPp disappearance. A large proportion of the ingested DMSPp was thought to be released as dissolved DMSP rather than DMS. An estimate of the total DMS flux to the atmosphere was equivalent to only 1.3% of the ‘gross’ DMSPp production in the surface layer during the developing phase of the phytoplankton bloom covered by this experiment. Other processes known to cause DMSP release from phytoplankton, such as viral lysis and senescence, may have become more important if the phytoplankton community had reached higher concentrations and/or encountered more growth-limiting conditions. However, in the present experiment horizontal and vertical mixing appeared to play a major role in determining the fate of the SF6-labelled water, and hence the progression of the phytoplankton community." @default.
- W2109128373 created "2016-06-24" @default.
- W2109128373 creator A5009919305 @default.
- W2109128373 creator A5025073434 @default.
- W2109128373 creator A5046260539 @default.
- W2109128373 creator A5067399787 @default.
- W2109128373 creator A5068095356 @default.
- W2109128373 creator A5082914041 @default.
- W2109128373 creator A5086930772 @default.
- W2109128373 date "2002-01-01" @default.
- W2109128373 modified "2023-09-27" @default.
- W2109128373 title "Dynamics of particulate dimethylsulphoniopropionate during a Lagrangian experiment in the northern North Sea" @default.
- W2109128373 cites W1499025558 @default.
- W2109128373 cites W1679993712 @default.
- W2109128373 cites W1967176695 @default.
- W2109128373 cites W1967815663 @default.
- W2109128373 cites W1970113193 @default.
- W2109128373 cites W1975509275 @default.
- W2109128373 cites W1978048577 @default.
- W2109128373 cites W1979101521 @default.
- W2109128373 cites W1981829153 @default.
- W2109128373 cites W1982254235 @default.
- W2109128373 cites W1983678147 @default.
- W2109128373 cites W1983748242 @default.
- W2109128373 cites W1993348351 @default.
- W2109128373 cites W1999308740 @default.
- W2109128373 cites W2006295470 @default.
- W2109128373 cites W2010229970 @default.
- W2109128373 cites W2013814361 @default.
- W2109128373 cites W2021046037 @default.
- W2109128373 cites W2022312157 @default.
- W2109128373 cites W2024751943 @default.
- W2109128373 cites W2024887920 @default.
- W2109128373 cites W2025959787 @default.
- W2109128373 cites W2026099242 @default.
- W2109128373 cites W2028664160 @default.
- W2109128373 cites W2030504896 @default.
- W2109128373 cites W2032246975 @default.
- W2109128373 cites W2038829902 @default.
- W2109128373 cites W2041474117 @default.
- W2109128373 cites W2041910381 @default.
- W2109128373 cites W2055573481 @default.
- W2109128373 cites W2063112819 @default.
- W2109128373 cites W2064396267 @default.
- W2109128373 cites W2069574400 @default.
- W2109128373 cites W2070126720 @default.
- W2109128373 cites W2070352840 @default.
- W2109128373 cites W2070627708 @default.
- W2109128373 cites W2079013468 @default.
- W2109128373 cites W2086883166 @default.
- W2109128373 cites W2089017862 @default.
- W2109128373 cites W2091816721 @default.
- W2109128373 cites W2091844792 @default.
- W2109128373 cites W2092597127 @default.
- W2109128373 cites W2093575106 @default.
- W2109128373 cites W2111612117 @default.
- W2109128373 cites W2111827439 @default.
- W2109128373 cites W2117759809 @default.
- W2109128373 cites W2129464755 @default.
- W2109128373 cites W2145760163 @default.
- W2109128373 cites W2149932227 @default.
- W2109128373 cites W2153691588 @default.
- W2109128373 cites W2153745071 @default.
- W2109128373 cites W2155489667 @default.
- W2109128373 cites W2158647712 @default.
- W2109128373 cites W2159088185 @default.
- W2109128373 cites W2163210913 @default.
- W2109128373 cites W2164689991 @default.
- W2109128373 cites W2169524610 @default.
- W2109128373 cites W82692694 @default.
- W2109128373 doi "https://doi.org/10.1016/s0967-0645(02)00067-x" @default.
- W2109128373 hasPublicationYear "2002" @default.
- W2109128373 type Work @default.
- W2109128373 sameAs 2109128373 @default.
- W2109128373 citedByCount "47" @default.
- W2109128373 countsByYear W21091283732012 @default.
- W2109128373 countsByYear W21091283732014 @default.
- W2109128373 countsByYear W21091283732015 @default.
- W2109128373 countsByYear W21091283732016 @default.
- W2109128373 countsByYear W21091283732017 @default.
- W2109128373 countsByYear W21091283732019 @default.
- W2109128373 countsByYear W21091283732020 @default.
- W2109128373 crossrefType "journal-article" @default.
- W2109128373 hasAuthorship W2109128373A5009919305 @default.
- W2109128373 hasAuthorship W2109128373A5025073434 @default.
- W2109128373 hasAuthorship W2109128373A5046260539 @default.
- W2109128373 hasAuthorship W2109128373A5067399787 @default.
- W2109128373 hasAuthorship W2109128373A5068095356 @default.
- W2109128373 hasAuthorship W2109128373A5082914041 @default.
- W2109128373 hasAuthorship W2109128373A5086930772 @default.
- W2109128373 hasConcept C107872376 @default.
- W2109128373 hasConcept C111368507 @default.
- W2109128373 hasConcept C122846477 @default.
- W2109128373 hasConcept C127313418 @default.
- W2109128373 hasConcept C142796444 @default.
- W2109128373 hasConcept C155567681 @default.
- W2109128373 hasConcept C185592680 @default.
- W2109128373 hasConcept C18903297 @default.