Matches in SemOpenAlex for { <https://semopenalex.org/work/W2109165079> ?p ?o ?g. }
- W2109165079 endingPage "408" @default.
- W2109165079 startingPage "394" @default.
- W2109165079 abstract "Phenotypic flexibility in shorebirds has been studied mainly in the context of adjustments to migration and to quality of food; little is known on how birds adjust their phenotype to harsh winter conditions. We showed earlier that red knot (Calidris canutus islandica) can acclimate to cold by elevating body mass. This goes together with larger pectoral muscles, i.e., greater shivering machinery, and thus, better thermogenic capacity. Here, we present results of a yearlong experiment with indoor captive knots to determine whether this strategy is part of their natural seasonal phenotypic cycle. We maintained birds under three thermal regimes: constant cold (5°C), constant thermoneutrality (25°C) and natural seasonal variation between these extremes (9–22°C). Each month we measured variables related to the birds’ endurance to cold and physiological maintenance [body mass, thickness of pectoral muscles, summit metabolic rate (Msum), food intake, gizzard size, basal metabolic rate (BMR)]. Birds from all treatments expressed synchronized and comparable variation in body mass in spite of thermal treatments, with a 17–18% increase between the warmest and coldest months of the year; which appeared regulated by an endogenous driver. In addition, birds living in the cold exhibited a 10% higher average body mass than did those maintained at thermoneutrality. Thickness of the pectoral muscle tracked changes in body mass in all treatments and likely contributed to greater capacity for shivering in heavier birds. Consequently, Msum was 13% higher in cold-acclimated birds compared to those experiencing no thermoregulation costs. However, our data also suggest that part of maximal heat production comes from nonshivering processes. Birds facing cold conditions ate up to 25% more food than did birds under thermoneutral conditions, yet did not develop larger gizzards. Seasonal variation in BMR followed changes in body mass, probably reflecting changes in mass of metabolically active tissues. Just as cold-exposed birds, red knots in the variable treatment increased body mass in winter, thereby improving cold endurance. During summer, however, they maintained a lower body mass and thermogenic capacity compared to cold-exposed birds, similar to individuals kept at thermoneutrality. We conclude that red knots acclimate to seasonal variations in ambient temperature by modulating body mass, combining a preprogrammed increase in mass during winter with a capacity for fine-tuning body mass and thermogenic capacity to temperature variations." @default.
- W2109165079 created "2016-06-24" @default.
- W2109165079 creator A5001331441 @default.
- W2109165079 creator A5033978446 @default.
- W2109165079 creator A5058673353 @default.
- W2109165079 date "2011-06-22" @default.
- W2109165079 modified "2023-10-16" @default.
- W2109165079 title "Shorebirds' Seasonal Adjustments in Thermogenic Capacity Are Reflected by Changes in Body Mass: How Preprogrammed and Instantaneous Acclimation Work Together" @default.
- W2109165079 cites W1576414414 @default.
- W2109165079 cites W178824453 @default.
- W2109165079 cites W1906998803 @default.
- W2109165079 cites W1965557816 @default.
- W2109165079 cites W1990436142 @default.
- W2109165079 cites W1993752608 @default.
- W2109165079 cites W2000644763 @default.
- W2109165079 cites W2002061222 @default.
- W2109165079 cites W2004958268 @default.
- W2109165079 cites W2017917281 @default.
- W2109165079 cites W2026123439 @default.
- W2109165079 cites W2028392005 @default.
- W2109165079 cites W2029877327 @default.
- W2109165079 cites W2031573366 @default.
- W2109165079 cites W2043424316 @default.
- W2109165079 cites W2043595377 @default.
- W2109165079 cites W2046967353 @default.
- W2109165079 cites W2057330583 @default.
- W2109165079 cites W2058691445 @default.
- W2109165079 cites W2066273038 @default.
- W2109165079 cites W2066831838 @default.
- W2109165079 cites W2071151976 @default.
- W2109165079 cites W2073976252 @default.
- W2109165079 cites W2075646184 @default.
- W2109165079 cites W2075981121 @default.
- W2109165079 cites W2082492225 @default.
- W2109165079 cites W2083584065 @default.
- W2109165079 cites W2085529485 @default.
- W2109165079 cites W2086692322 @default.
- W2109165079 cites W2092281675 @default.
- W2109165079 cites W2092572219 @default.
- W2109165079 cites W2095480857 @default.
- W2109165079 cites W2105856665 @default.
- W2109165079 cites W2106375135 @default.
- W2109165079 cites W2108342791 @default.
- W2109165079 cites W2116276799 @default.
- W2109165079 cites W2120854694 @default.
- W2109165079 cites W2121693752 @default.
- W2109165079 cites W2122453991 @default.
- W2109165079 cites W2125011826 @default.
- W2109165079 cites W2126304065 @default.
- W2109165079 cites W2129923710 @default.
- W2109165079 cites W2130925136 @default.
- W2109165079 cites W2131372976 @default.
- W2109165079 cites W2132145999 @default.
- W2109165079 cites W2133823845 @default.
- W2109165079 cites W2135802278 @default.
- W2109165079 cites W2137683709 @default.
- W2109165079 cites W2142500960 @default.
- W2109165079 cites W2145455882 @default.
- W2109165079 cites W2147646051 @default.
- W2109165079 cites W2157619802 @default.
- W2109165079 cites W2158444148 @default.
- W2109165079 cites W2161590418 @default.
- W2109165079 cites W2166818886 @default.
- W2109165079 cites W2169681605 @default.
- W2109165079 cites W2174981834 @default.
- W2109165079 cites W2188688192 @default.
- W2109165079 cites W2316139159 @default.
- W2109165079 cites W2322376560 @default.
- W2109165079 cites W2512204059 @default.
- W2109165079 cites W4234511316 @default.
- W2109165079 doi "https://doi.org/10.1093/icb/icr044" @default.
- W2109165079 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21700573" @default.
- W2109165079 hasPublicationYear "2011" @default.
- W2109165079 type Work @default.
- W2109165079 sameAs 2109165079 @default.
- W2109165079 citedByCount "56" @default.
- W2109165079 countsByYear W21091650792012 @default.
- W2109165079 countsByYear W21091650792013 @default.
- W2109165079 countsByYear W21091650792014 @default.
- W2109165079 countsByYear W21091650792015 @default.
- W2109165079 countsByYear W21091650792016 @default.
- W2109165079 countsByYear W21091650792017 @default.
- W2109165079 countsByYear W21091650792018 @default.
- W2109165079 countsByYear W21091650792019 @default.
- W2109165079 countsByYear W21091650792020 @default.
- W2109165079 countsByYear W21091650792021 @default.
- W2109165079 countsByYear W21091650792022 @default.
- W2109165079 countsByYear W21091650792023 @default.
- W2109165079 crossrefType "journal-article" @default.
- W2109165079 hasAuthorship W2109165079A5001331441 @default.
- W2109165079 hasAuthorship W2109165079A5033978446 @default.
- W2109165079 hasAuthorship W2109165079A5058673353 @default.
- W2109165079 hasBestOaLocation W21091650791 @default.
- W2109165079 hasConcept C100564792 @default.
- W2109165079 hasConcept C105702510 @default.
- W2109165079 hasConcept C119406331 @default.
- W2109165079 hasConcept C134018914 @default.
- W2109165079 hasConcept C140793950 @default.