Matches in SemOpenAlex for { <https://semopenalex.org/work/W2109170403> ?p ?o ?g. }
- W2109170403 endingPage "16" @default.
- W2109170403 startingPage "6" @default.
- W2109170403 abstract "Child DevelopmentVolume 84, Issue 1 p. 6-16 SPECIAL SECTION: GENOMICS Introduction to the Special Section on Genomics Elena L. Grigorenko, Elena L. Grigorenko Yale UniversitySearch for more papers by this authorMary Dozier, Corresponding Author Mary Dozier University of DelawareCorrespondence concerning this article should be addressed to Mary Dozier, Department of Psychology, University of Delaware, Newark, DE 19716. Electronic mail may be sent to [email protected].Search for more papers by this author Elena L. Grigorenko, Elena L. Grigorenko Yale UniversitySearch for more papers by this authorMary Dozier, Corresponding Author Mary Dozier University of DelawareCorrespondence concerning this article should be addressed to Mary Dozier, Department of Psychology, University of Delaware, Newark, DE 19716. Electronic mail may be sent to [email protected].Search for more papers by this author First published: 25 January 2013 https://doi.org/10.1111/cdev.12045Citations: 5 The preparation of this article was supported by NIH Grant R01 DC007665 to Elena L. Grigorenko and by NIH Grants R01MH084135 and R01MH52135 to Mary Dozier. Grantees undertaking such projects are encouraged to express freely their professional judgment. This article, therefore, does not necessarily reflect the position or policies of the National Institutes of Health, and no official endorsement should be inferred. We are grateful to Ms. Mei Tan for her editorial assistance. Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL References Beaudet, A. L. (2013). The utility of chromosomal microarray analysis in developmental and behavioral pediatrics. Child Development, 84, 121– 132. Bernstein, B. E., Stamatoyannopoulos, J. A., Costello, J. F., Ren, B., Milosavljevic, A., Meissner, A., et al. (2010). The NIH roadmap epigenomics mapping consortium. Nature Biotechnology, 28, 1045– 1048. doi:10.1038/nbt1010-1045 Best is yet to come (editorial). (2011). Nature, 470, 140. doi:10.1038/470140a Bird, A. (2007). Perceptions of epigenetics. Nature, 447, 396– 398. doi:10.1038/nature05913 Bjornsson, H. T., Fallin, M. D., & Feinberg, A. P. (2004). An integrated epigenetic and genetic approach to common human disease. Trends in Genetics, 20, 350– 358. Boker, S. M., Molenaar, P. C. M., & Nesselroade, J. R. (2009). Issues in intraindividual variability: Individual differences in equilibria and dynamics over multiple time scales. Psychology and Aging, 24, 858– 862. Botkin, J. R., Teutsch, S. M., Kaye, C. I., Hayes, M., Haddow, J. E., Bradley, L. A., & EGAPP Working Group. (2010). Outcomes of interest in evidence-based evaluations of genetic tests. Genetics in Medicine, 12, 228– 235. Clamp, M., Fry, B., Kamal, M., Xie, X., Cuff, J., Lin, M. F., et al. (2007). Distinguishing protein-coding and noncoding genes in the human genome. PNAS, 104, 19428– 19433. Collins, F. S. (2010). The language of life: DNA and the revolution in personalised medicine. New York, NY: HarperCollins. Connolly, J. J., Glessner, J. T., & Hakonarson, H. (2013). A genome-wide association study of autism incorporating ADI-R, ADOS, and SRS. Child Development, 84, 17– 33. Costa, V., Angelini, C., De Feis, I., & Ciccodicola, A. (2011). Uncovering the complexity of transcriptomes with RNA-Seq. Journal of Biomedicine and Biotechnology, 10, 1– 19. Courtney, E., Kornfeld, S., Janitz, K., & Janitz, M. (2010). Transcriptome profiling in neurodegenerative disease. Journal of Neuroscience Methods, 193, 189– 202. DeFrancesco, L., & Subbaraman, N. (2011). Sequencing firms eye pathology labs as next big market opportunity. Nature Biotechnology, 29, 379– 380. Doolittle, W. F., & Sapienza, C. (1980). Selfish genes, the phenotype paradigm and genome evolution. Nature, 284, 601– 603. Duster, T. (2006). Comparative perspectives and competing explanations: Taking on the newly configured reductionist challenge to sociology. American Sociological Review, 71, 1– 15. Ercan-Sencicek, A. G., Davis Wright, N. R., Sanders, S. S., Oakman, N., Valdes, L., Bakkaloglu, B., et al. (2012). A balanced t(10;15) translocation in a male patient with developmental language disorder. European Journal of Medical Genetics, 55, 128– 131. Essex, M. J., Boyce, W. T., Heertzman, C., Lam, L., Armstrong, J. M., Neumann, S. M. A., et al. (2013). Epigenetic vestiges of early developmental adversity: Childhood stress exposure and DNA methylation in adolescence. Child Development, 84, 58– 75. Feero, W., & Green, E. D. (2011). Genomics education for health care professionals in the 21st century. JAMA, 306, 989– 990. doi:10.1001/jama.2011.1245 Feinberg, A. P. (2007). Phenotypic plasticity and the epigenetics of human disease. Nature, 447, 433– 440. doi:10.1038/nature05919 Fogel, A. (2011). Theoretical and applied dynamic systems research in developmental science. Child Development Perspectives, 5, 267– 272. doi:10.1111/j.1750-8606.2011.00174.x Fraga, M. F., Ballestar, E., Paz, M. F., Ropero, S., Setien, F., Ballestar, M. L., et al. (2005). Epigenetic differences arise during the lifetime of monozygotic twins. Proceedings of the National Academy of Sciences of the United States of America, 102, 10604– 10609. Friso, S., Choi, S. W., Girelli, D., Mason, J. B., Dolnikowski, G. G., Bagley, P. J., et al. (2002). A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status. PNAS, 99, 5606– 5611. Frueh, F. W., Amur, S., Mummaneni, P., Epstein, R. S., Aubert, R. E., DeLuca, T. M., et al. (2008). Pharmacogenomic biomarker information in drug labels approved by the United States Food and Drug Administration: Prevalence of related drug use. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 28, 992– 998. doi:10.1592/phco.28.8.992 Gabriel, S. B., Schaffner, S. F., Nguyen, H., Moore, J. M., Roy, J., Blumenstiel, B., et al. (2002). The structure of haplotype blocks in the human genome. Science, 296, 2225– 2229. Goldstein, D. B. (2009). Common genetic variation and human traits. New England Journal of Medicine, 360, 1696– 1698. doi:10.1056/NEJMp0806284 Gollust, S. E., Hull, S. C., & Wilfond, B. S. (2002). Limitations of direct-to-consumer advertising for clinical genetic testing. JAMA, 288, 1762– 1767. Green, E. D., & Guyer, M. S. (2011). Charting a course for genomic medicine from base pairs to bedside. Nature, 470, 204– 213. doi:10.1038/nature09764 Guttmacher, A. E., Porteous, M. E., & McInerney, J. D. (2007). Educating health-care professionals about genetics and genomics. Nature Reviews Genetics, 8, 151– 157. doi:10.1038/nrg2007 Hardy, J., & Singleton, A. (2009). Genomewide association studies and human disease. New England Journal of Medicine, 360, 1759– 1768. Hawkins, R. D., Hon, G. C., & Ren, B. (2010). Next-generation genomics: An integrative approach. Nature Reviews Genetics, 11, 476– 486. doi:10.1038/nrg2795 Herring, R. J. (2007). The genomics revolution and development studies: Science, poverty and politics. Journal of Development Studies, 43, 1– 30. Heseker, H. (2011). Folic acid and other potential measures in the prevention of neural tube defects. Annals of Nutrition & Metabolism, 59, 41– 45. doi:10.1159/000332126 Hu, V. W. (2013). From genes to environment: Using integrative genomics to build a “systems-level” understanding of autism spectrum disorders. Child Development, 84, 89– 103. Human Genome Program. (2008). Genomics and its impact on science and society: A 2008 primer. Washington, DC: U.S. Department of Energy. Issa, J. P. (2000). CpG-island methylation in aging and cancer. Current Topics in Microbiology & Immunology, 249, 101– 118. Jacob, R. A. (1999). The role of micronutrients in DNA synthesis and maintenance. Advances in Experimental Medicine & Biology, 472, 101– 113. Jacquier, A. (2009). The complex eukaryotic transcriptome: Unexpected pervasive transcription and novel small RNAs. Nature Reviews Genetics, 10, 833– 844. Jaenisch, R., & Bird, A. (2003). Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals. Nature Genetics, 33(Suppl.), 245– 254. Kato, T., Iwamoto, K., Kakiuchi, C., Kuratomi, G., & Okazaki, Y. (2005). Genetic or epigenetic difference causing discordance between monozygotic twins as a clue to molecular basis of mental disorders. Molecular Psychiatry, 10, 622– 630. Lander, E. S. (2011). Initial impact of the sequencing of the human genome. Nature, 470, 187– 197. doi:10.1038/nature09792 Lander, E. S., & Schork, N. J. (1994). Genetic dissection of complex traits. Science, 265, 2037– 2048. Levy, P. A. (2010). An overview of newborn screening. Journal of Developmental and Behavioral Pediatrics, 31, 622– 631. Lindberg, J., & Lundeberg, J. (2010). The plasticity of the mammalian transcriptome. Genomics, 95, 1– 6. Lohmueller, K. E., Pearce, C. L., Pike, M., Lander, E. S., & Hirschhorn, J. N. (2003). Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nature Genetics, 33, 177– 182. Manolio, T. A. (2010). Genomewide association studies and assessment of the risk of disease. New England Journal of Medicine, 363, 166– 176. doi:10.1056/NEJMra0905980 Martin, J. A., & Wang, Z. (2011). Next-generation transcriptome assembly. Nature Revews Genetics, 12, 671– 682. doi:10.1038/nrg3068 Miller, D. T., Adam, M. P., Aradhya, S., Biesecker, L. G., Brothman, A. R., Carter, N. P., et al. (2010). Consensus statement: Chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. American Journal of Human Genetics, 86, 749– 764. doi:10.1016/j.ajhg.2010.04.006 Naumova, O. Y., Lee, M., Rychkov, S. Y., Vlasova, N. V., & Grigorenko, E. L. (2013). Gene expression in the human brain: The current state of the study of specificity and spatiotemporal dynamics. Child Development, 84, 76– 88. Need, A. C., & Goldstein, D. B. (2009). Next generation disparities in human genomics: Concerns and remedies. Trends in Genetics, 25, 489– 494. doi:10.1016/j.tig.2009.09.012 Ozsolak, F., & Milos, P. M. (2011). RNA sequencing: Advances, challenges and opportunities. Nature Revews Genetics, 12, 87– 98. doi:10.1038/nrg2934 Plomin, R. (2013). Child development and molecular genetics: 13 years later. Child Development, 84, 104– 120. Plomin, R., DeFries, J. C., Craig, I. W., & McGuffin, P. (Eds.). (2003). Behavioral genetics in the postgenomic era. Washington, DC: APA. Plomin, R., & Rutter, M. (1998). Child development, molecular genetics, and what to do with genes once they are found. Child Development, 69, 1223– 1242. Ridley, M. (1999). Genome: The autobiography of a apecies in 23 chapters. London, UK: Fourth Estate. Risch, N., Burchard, E., Ziv, E., & Tang, H. (2007). Categorization of humans in biomedical research: Genes, race and disease. Genome Biology, 3. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC139378/pdf/gb-2002-3-7-comment2007.pdf Rubinstein, W. S., & Roy, H. K. (2005). Practicing medicine at the front lines of the genomic revolution. Archives of Internal Medicine, 165, 1815– 1817. Schully, S. D., Benedicto, C. B., Gillanders, E. M., Wang, S. S., & Khoury, M. J. (2011). Translational research in cancer genetics: The road less traveled. Public Health Genomics, 14, 1– 8. Shostak, S., Zarhin, D., & Ottman, R. (2011). What's at stake? Genetic information from the perspective of people with epilepsy and their family members. Social Science & Medicine, 73, 645– 654. doi:10.1016/j.socscimed.2011.06.043 Silvers, A., & Stein, M. A. (2003). Human rights and genetic discrimination: Protecting genomics' promise for public health. Journal of Law, Medicine & Ethics, 31, 377– 389. Slatkin, M. (2009). Epigenetic inheritance and the missing heritability problem. Genetics, 182, 845– 850. Szyf, M., & Bick, J. (2013). DNA methylation: A mechanism for embedding early life experiences in the genome. Child Development, 84, 49– 57. Taft, R. J., Pheasant, M., & Mattick, J. S. (2007). The relationship between non-protein-coding DNA and eukaryotic complexity. BioEssays, 29, 288– 299. Thomas, S. M. (2004). Society and ethics—The genetics of disease. Current Opinion in Genetics & Development, 14, 287– 291. doi:10.1016/j.gde.2004.04.014 Torrance, A. W. (2010). Family law and the genomic revolution. University of Missouri-Kansas City Law Review, 79, 271– 282. Van Speybroeck, L. (2002). From epigenesis to epigenetics: The case of C. H. Waddington. Annals of the New York Academy of Sciences, 981, 61– 81. Velculescu, V. E., Zhang, L., Zhou, W., Vogelstein, J., Basrai, M. A., Bassett, D. E., Jr., et al. (1997). Characterization of the yeast transcriptome. Cell, 88, 243– 251. Waddington, C. (1940). The genetic control of wing development in Drosophila. Journal of Genetics, 41, 75– 80. Wang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: A revolutionary tool for transcriptomics. Nature Reviews Genetics, 10, 57– 63. Weinshilboum, R. M. (2002). The genomic revolution and medicine. Mayo Clinic Proceedings, 77, 745– 746. Willemsen, M. H., de Leeuw, N., de Brouwer, A. P. M., Pfundt, R., Hehir-Kwa, J. Y., Yntema, H. G., et al. (2012). Interpretation of clinical relevance of X-chromosome copy number variations identified in a large cohort of individuals with cognitive disorders and/or congenital anomalies. European Journal of Medical Genetics, 55, 586– 598. doi:10.1016/j.ejmg.2012.05.001 Williams, M. S. (2007). Insurance coverage for pharmacogenomic testing. Personal Medicine, 4, 479– 487. Zhang, Y., Haraksingh, R., Grubert, F., Abyzov, A., Gerstein, M., Weissman, S., et al. (2013). Child development and structural variation in the human genome. Child Development, 84, 34– 48. Zuk, O., Hechter, E., Sunyaev, S. R., & Lander, E. S. (2012). The mystery of missing heritability: Genetic interactions create phantom heritability. PNAS, 109, 1193– 1198. Citing Literature Volume84, Issue1January/February 2013Pages 6-16 ReferencesRelatedInformation" @default.
- W2109170403 created "2016-06-24" @default.
- W2109170403 creator A5018065406 @default.
- W2109170403 creator A5053377460 @default.
- W2109170403 date "2013-01-01" @default.
- W2109170403 modified "2023-10-10" @default.
- W2109170403 title "Introduction to the Special Section on Genomics" @default.
- W2109170403 cites W1531164380 @default.
- W2109170403 cites W1542885239 @default.
- W2109170403 cites W1543050851 @default.
- W2109170403 cites W1597801962 @default.
- W2109170403 cites W1687588654 @default.
- W2109170403 cites W1883475599 @default.
- W2109170403 cites W1942677302 @default.
- W2109170403 cites W1967064280 @default.
- W2109170403 cites W1969335770 @default.
- W2109170403 cites W1971224919 @default.
- W2109170403 cites W1971899779 @default.
- W2109170403 cites W1981509058 @default.
- W2109170403 cites W1982288513 @default.
- W2109170403 cites W1984477277 @default.
- W2109170403 cites W1986093314 @default.
- W2109170403 cites W1987493079 @default.
- W2109170403 cites W1990534080 @default.
- W2109170403 cites W1997113958 @default.
- W2109170403 cites W1997890656 @default.
- W2109170403 cites W1999478182 @default.
- W2109170403 cites W2002752738 @default.
- W2109170403 cites W2004628391 @default.
- W2109170403 cites W2007807048 @default.
- W2109170403 cites W2010222743 @default.
- W2109170403 cites W2010380543 @default.
- W2109170403 cites W2010963165 @default.
- W2109170403 cites W2012254260 @default.
- W2109170403 cites W2012788417 @default.
- W2109170403 cites W2016122088 @default.
- W2109170403 cites W2019411793 @default.
- W2109170403 cites W2033102369 @default.
- W2109170403 cites W2048540261 @default.
- W2109170403 cites W2051071425 @default.
- W2109170403 cites W2058889117 @default.
- W2109170403 cites W2060842569 @default.
- W2109170403 cites W2062561058 @default.
- W2109170403 cites W2065435420 @default.
- W2109170403 cites W2066585898 @default.
- W2109170403 cites W2077638293 @default.
- W2109170403 cites W2078370799 @default.
- W2109170403 cites W2079642576 @default.
- W2109170403 cites W2084160423 @default.
- W2109170403 cites W2087071297 @default.
- W2109170403 cites W2088722891 @default.
- W2109170403 cites W2092478868 @default.
- W2109170403 cites W2094725415 @default.
- W2109170403 cites W2103487526 @default.
- W2109170403 cites W2110808585 @default.
- W2109170403 cites W2112903461 @default.
- W2109170403 cites W2115460495 @default.
- W2109170403 cites W2121750275 @default.
- W2109170403 cites W2123466824 @default.
- W2109170403 cites W2123574746 @default.
- W2109170403 cites W2128731054 @default.
- W2109170403 cites W2131587128 @default.
- W2109170403 cites W2134555277 @default.
- W2109170403 cites W2138020005 @default.
- W2109170403 cites W2150732692 @default.
- W2109170403 cites W2152664025 @default.
- W2109170403 cites W2159835267 @default.
- W2109170403 cites W2187181884 @default.
- W2109170403 cites W4213265720 @default.
- W2109170403 cites W4230123828 @default.
- W2109170403 cites W4239441030 @default.
- W2109170403 cites W4297745087 @default.
- W2109170403 cites W52254133 @default.
- W2109170403 doi "https://doi.org/10.1111/cdev.12045" @default.
- W2109170403 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3688639" @default.
- W2109170403 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23350524" @default.
- W2109170403 hasPublicationYear "2013" @default.
- W2109170403 type Work @default.
- W2109170403 sameAs 2109170403 @default.
- W2109170403 citedByCount "8" @default.
- W2109170403 countsByYear W21091704032013 @default.
- W2109170403 countsByYear W21091704032014 @default.
- W2109170403 countsByYear W21091704032015 @default.
- W2109170403 countsByYear W21091704032016 @default.
- W2109170403 countsByYear W21091704032019 @default.
- W2109170403 crossrefType "journal-article" @default.
- W2109170403 hasAuthorship W2109170403A5018065406 @default.
- W2109170403 hasAuthorship W2109170403A5053377460 @default.
- W2109170403 hasBestOaLocation W21091704032 @default.
- W2109170403 hasConcept C104317684 @default.
- W2109170403 hasConcept C111919701 @default.
- W2109170403 hasConcept C127413603 @default.
- W2109170403 hasConcept C141231307 @default.
- W2109170403 hasConcept C15744967 @default.
- W2109170403 hasConcept C188147891 @default.
- W2109170403 hasConcept C189206191 @default.
- W2109170403 hasConcept C2780129039 @default.
- W2109170403 hasConcept C2993458768 @default.