Matches in SemOpenAlex for { <https://semopenalex.org/work/W2109200236> ?p ?o ?g. }
- W2109200236 endingPage "116" @default.
- W2109200236 startingPage "79" @default.
- W2109200236 abstract "The fact that objects in the world appear in different ways depending on the scale of observation has important implications if one aims at describing them. It shows that the notion of scale is of utmost importance when processing unknown measurement data by automatic methods. In their seminal works, Witkin (1983) and Koenderink (1984) proposed to approach this problem by representing image structures at different scales in a so-called scale-space representation. Traditional scale-space theory building on this work, however, does not address the problem of how to select local appropriate scales for further analysis. This article proposes a systematic methodology for dealing with this problem. A framework is presented for generating hypotheses about interesting scale levels in image data, based on a general principle stating that local extrema over scales of different combinations of γ-normalized derivatives are likely candidates to correspond to interesting structures. Specifically, it is shown how this idea can be used as a major mechanism in algorithms for automatic scale selection, which adapt the local scales of processing to the local image structure. Support for the proposed approach is given in terms of a general theoretical investigation of the behaviour of the scale selection method under rescalings of the input pattern and by integration with different types of early visual modules, including experiments on real-world and synthetic data. Support is also given by a detailed analysis of how different types of feature detectors perform when integrated with a scale selection mechanism and then applied to characteristic model patterns. Specifically, it is described in detail how the proposed methodology applies to the problems of blob detection, junction detection, edge detection, ridge detection and local frequency estimation. In many computer vision applications, the poor performance of the low-level vision modules constitutes a major bottleneck. It is argued that the inclusion of mechanisms for automatic scale selection is essential if we are to construct vision systems to automatically analyse complex unknown environments." @default.
- W2109200236 created "2016-06-24" @default.
- W2109200236 creator A5054396186 @default.
- W2109200236 date "1998-01-01" @default.
- W2109200236 modified "2023-10-16" @default.
- W2109200236 cites W1237598256 @default.
- W2109200236 cites W1490384903 @default.
- W2109200236 cites W1495971627 @default.
- W2109200236 cites W1506762359 @default.
- W2109200236 cites W1508335110 @default.
- W2109200236 cites W1510022078 @default.
- W2109200236 cites W1519430906 @default.
- W2109200236 cites W1526675046 @default.
- W2109200236 cites W1527702568 @default.
- W2109200236 cites W1563743568 @default.
- W2109200236 cites W1604857055 @default.
- W2109200236 cites W1941828309 @default.
- W2109200236 cites W1970269179 @default.
- W2109200236 cites W1970393892 @default.
- W2109200236 cites W1970554717 @default.
- W2109200236 cites W1973976434 @default.
- W2109200236 cites W2002312729 @default.
- W2109200236 cites W2004217976 @default.
- W2109200236 cites W2022735534 @default.
- W2109200236 cites W2029881338 @default.
- W2109200236 cites W2033663049 @default.
- W2109200236 cites W2034501924 @default.
- W2109200236 cites W2039432243 @default.
- W2109200236 cites W2047799558 @default.
- W2109200236 cites W2050139660 @default.
- W2109200236 cites W2055339315 @default.
- W2109200236 cites W2059871232 @default.
- W2109200236 cites W2059993298 @default.
- W2109200236 cites W2073351463 @default.
- W2109200236 cites W2075747175 @default.
- W2109200236 cites W2076898815 @default.
- W2109200236 cites W2089597841 @default.
- W2109200236 cites W2097887900 @default.
- W2109200236 cites W2109863423 @default.
- W2109200236 cites W2112328181 @default.
- W2109200236 cites W2112563839 @default.
- W2109200236 cites W2116210142 @default.
- W2109200236 cites W2117612778 @default.
- W2109200236 cites W2120062331 @default.
- W2109200236 cites W2120959665 @default.
- W2109200236 cites W2121870444 @default.
- W2109200236 cites W2123340620 @default.
- W2109200236 cites W2143539328 @default.
- W2109200236 cites W2152328854 @default.
- W2109200236 cites W2154430909 @default.
- W2109200236 cites W2156846363 @default.
- W2109200236 cites W2157339381 @default.
- W2109200236 cites W2160102871 @default.
- W2109200236 cites W2167034998 @default.
- W2109200236 cites W217955018 @default.
- W2109200236 cites W2914011225 @default.
- W2109200236 cites W2978983090 @default.
- W2109200236 cites W2591262154 @default.
- W2109200236 cites W4764203 @default.
- W2109200236 doi "https://doi.org/10.1023/a:1008045108935" @default.
- W2109200236 hasPublicationYear "1998" @default.
- W2109200236 type Work @default.
- W2109200236 sameAs 2109200236 @default.
- W2109200236 citedByCount "2103" @default.
- W2109200236 countsByYear W21092002362012 @default.
- W2109200236 countsByYear W21092002362013 @default.
- W2109200236 countsByYear W21092002362014 @default.
- W2109200236 countsByYear W21092002362015 @default.
- W2109200236 countsByYear W21092002362016 @default.
- W2109200236 countsByYear W21092002362017 @default.
- W2109200236 countsByYear W21092002362018 @default.
- W2109200236 countsByYear W21092002362019 @default.
- W2109200236 countsByYear W21092002362020 @default.
- W2109200236 countsByYear W21092002362021 @default.
- W2109200236 countsByYear W21092002362022 @default.
- W2109200236 countsByYear W21092002362023 @default.
- W2109200236 crossrefType "journal-article" @default.
- W2109200236 hasAuthorship W2109200236A5054396186 @default.
- W2109200236 hasBestOaLocation W21092002362 @default.
- W2109200236 hasConcept C111919701 @default.
- W2109200236 hasConcept C11413529 @default.
- W2109200236 hasConcept C115961682 @default.
- W2109200236 hasConcept C121332964 @default.
- W2109200236 hasConcept C124101348 @default.
- W2109200236 hasConcept C134306372 @default.
- W2109200236 hasConcept C153180895 @default.
- W2109200236 hasConcept C154945302 @default.
- W2109200236 hasConcept C17744445 @default.
- W2109200236 hasConcept C186633575 @default.
- W2109200236 hasConcept C199539241 @default.
- W2109200236 hasConcept C2776359362 @default.
- W2109200236 hasConcept C2778572836 @default.
- W2109200236 hasConcept C2778755073 @default.
- W2109200236 hasConcept C33923547 @default.
- W2109200236 hasConcept C41008148 @default.
- W2109200236 hasConcept C62520636 @default.
- W2109200236 hasConcept C80444323 @default.
- W2109200236 hasConcept C81917197 @default.