Matches in SemOpenAlex for { <https://semopenalex.org/work/W2109214143> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2109214143 endingPage "BII.S8978" @default.
- W2109214143 startingPage "BII.S8978" @default.
- W2109214143 abstract "We describe and evaluate an automated approach used as part of the i2b2 2011 challenge to identify and categorise statements in suicide notes into one of 15 topics, including Love, Guilt, Thankfulness, Hopelessness and Instructions. The approach combines a set of lexico-syntactic rules with a set of models derived by machine learning from a training dataset. The machine learning models rely on named entities, lexical, lexico-semantic and presentation features, as well as the rules that are applicable to a given statement. On a testing set of 300 suicide notes, the approach showed the overall best micro F-measure of up to 53.36%. The best precision achieved was 67.17% when only rules are used, whereas best recall of 50.57% was with integrated rules and machine learning. While some topics (eg, Sorrow, Anger, Blame) prove challenging, the performance for relatively frequent (eg, Love) and well-scoped categories (eg, Thankfulness) was comparatively higher (precision between 68% and 79%), suggesting that automated text mining approaches can be effective in topic categorisation of suicide notes." @default.
- W2109214143 created "2016-06-24" @default.
- W2109214143 creator A5003609908 @default.
- W2109214143 creator A5005912060 @default.
- W2109214143 creator A5049040748 @default.
- W2109214143 creator A5071901091 @default.
- W2109214143 date "2012-01-01" @default.
- W2109214143 modified "2023-09-30" @default.
- W2109214143 title "Topic Categorisation of Statements in Suicide Notes with Integrated Rules and Machine Learning" @default.
- W2109214143 cites W1507711477 @default.
- W2109214143 cites W1967390364 @default.
- W2109214143 cites W2008803468 @default.
- W2109214143 cites W2025403586 @default.
- W2109214143 cites W2063205814 @default.
- W2109214143 cites W2139865360 @default.
- W2109214143 cites W2169387966 @default.
- W2109214143 cites W2171468534 @default.
- W2109214143 doi "https://doi.org/10.4137/bii.s8978" @default.
- W2109214143 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3409492" @default.
- W2109214143 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22879767" @default.
- W2109214143 hasPublicationYear "2012" @default.
- W2109214143 type Work @default.
- W2109214143 sameAs 2109214143 @default.
- W2109214143 citedByCount "3" @default.
- W2109214143 countsByYear W21092141432015 @default.
- W2109214143 countsByYear W21092141432020 @default.
- W2109214143 countsByYear W21092141432021 @default.
- W2109214143 crossrefType "journal-article" @default.
- W2109214143 hasAuthorship W2109214143A5003609908 @default.
- W2109214143 hasAuthorship W2109214143A5005912060 @default.
- W2109214143 hasAuthorship W2109214143A5049040748 @default.
- W2109214143 hasAuthorship W2109214143A5071901091 @default.
- W2109214143 hasBestOaLocation W21092141431 @default.
- W2109214143 hasConcept C100660578 @default.
- W2109214143 hasConcept C119857082 @default.
- W2109214143 hasConcept C126838900 @default.
- W2109214143 hasConcept C138885662 @default.
- W2109214143 hasConcept C154945302 @default.
- W2109214143 hasConcept C15744967 @default.
- W2109214143 hasConcept C177264268 @default.
- W2109214143 hasConcept C180747234 @default.
- W2109214143 hasConcept C199360897 @default.
- W2109214143 hasConcept C204321447 @default.
- W2109214143 hasConcept C2777026412 @default.
- W2109214143 hasConcept C2777601897 @default.
- W2109214143 hasConcept C2778980041 @default.
- W2109214143 hasConcept C2779302386 @default.
- W2109214143 hasConcept C2781466463 @default.
- W2109214143 hasConcept C41008148 @default.
- W2109214143 hasConcept C41895202 @default.
- W2109214143 hasConcept C71924100 @default.
- W2109214143 hasConcept C77805123 @default.
- W2109214143 hasConceptScore W2109214143C100660578 @default.
- W2109214143 hasConceptScore W2109214143C119857082 @default.
- W2109214143 hasConceptScore W2109214143C126838900 @default.
- W2109214143 hasConceptScore W2109214143C138885662 @default.
- W2109214143 hasConceptScore W2109214143C154945302 @default.
- W2109214143 hasConceptScore W2109214143C15744967 @default.
- W2109214143 hasConceptScore W2109214143C177264268 @default.
- W2109214143 hasConceptScore W2109214143C180747234 @default.
- W2109214143 hasConceptScore W2109214143C199360897 @default.
- W2109214143 hasConceptScore W2109214143C204321447 @default.
- W2109214143 hasConceptScore W2109214143C2777026412 @default.
- W2109214143 hasConceptScore W2109214143C2777601897 @default.
- W2109214143 hasConceptScore W2109214143C2778980041 @default.
- W2109214143 hasConceptScore W2109214143C2779302386 @default.
- W2109214143 hasConceptScore W2109214143C2781466463 @default.
- W2109214143 hasConceptScore W2109214143C41008148 @default.
- W2109214143 hasConceptScore W2109214143C41895202 @default.
- W2109214143 hasConceptScore W2109214143C71924100 @default.
- W2109214143 hasConceptScore W2109214143C77805123 @default.
- W2109214143 hasLocation W21092141431 @default.
- W2109214143 hasLocation W21092141432 @default.
- W2109214143 hasLocation W21092141433 @default.
- W2109214143 hasLocation W21092141434 @default.
- W2109214143 hasOpenAccess W2109214143 @default.
- W2109214143 hasPrimaryLocation W21092141431 @default.
- W2109214143 hasRelatedWork W1980567815 @default.
- W2109214143 hasRelatedWork W1989330888 @default.
- W2109214143 hasRelatedWork W2007409865 @default.
- W2109214143 hasRelatedWork W2062362237 @default.
- W2109214143 hasRelatedWork W2166156504 @default.
- W2109214143 hasRelatedWork W2396285377 @default.
- W2109214143 hasRelatedWork W2410360900 @default.
- W2109214143 hasRelatedWork W2961085424 @default.
- W2109214143 hasRelatedWork W3196645383 @default.
- W2109214143 hasRelatedWork W4229803982 @default.
- W2109214143 hasVolume "5s1" @default.
- W2109214143 isParatext "false" @default.
- W2109214143 isRetracted "false" @default.
- W2109214143 magId "2109214143" @default.
- W2109214143 workType "article" @default.