Matches in SemOpenAlex for { <https://semopenalex.org/work/W2109226248> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2109226248 endingPage "31" @default.
- W2109226248 startingPage "31" @default.
- W2109226248 abstract "Current inertial motion capture systems are rarely used in biomedical applications. The attachment and connection of the sensors with cables is often a complex and time consuming task. Moreover, it is prone to errors, because each sensor has to be attached to a predefined body segment. By using wireless inertial sensors and automatic identification of their positions on the human body, the complexity of the set-up can be reduced and incorrect attachments are avoided.We present a novel method for the automatic identification of inertial sensors on human body segments during walking. This method allows the user to place (wireless) inertial sensors on arbitrary body segments. Next, the user walks for just a few seconds and the segment to which each sensor is attached is identified automatically.Walking data was recorded from ten healthy subjects using an Xsens MVN Biomech system with full-body configuration (17 inertial sensors). Subjects were asked to walk for about 6 seconds at normal walking speed (about 5 km/h). After rotating the sensor data to a global coordinate frame with x-axis in walking direction, y-axis pointing left and z-axis vertical, RMS, mean, and correlation coefficient features were extracted from x-, y- and z-components and magnitudes of the accelerations, angular velocities and angular accelerations. As a classifier, a decision tree based on the C4.5 algorithm was developed using Weka (Waikato Environment for Knowledge Analysis).After testing the algorithm with 10-fold cross-validation using 31 walking trials (involving 527 sensors), 514 sensors were correctly classified (97.5%). When a decision tree for a lower body plus trunk configuration (8 inertial sensors) was trained and tested using 10-fold cross-validation, 100% of the sensors were correctly identified. This decision tree was also tested on walking trials of 7 patients (17 walking trials) after anterior cruciate ligament reconstruction, which also resulted in 100% correct identification, thus illustrating the robustness of the method." @default.
- W2109226248 created "2016-06-24" @default.
- W2109226248 creator A5033716406 @default.
- W2109226248 creator A5050056805 @default.
- W2109226248 creator A5054441181 @default.
- W2109226248 creator A5067633889 @default.
- W2109226248 creator A5080611863 @default.
- W2109226248 date "2013-01-01" @default.
- W2109226248 modified "2023-10-14" @default.
- W2109226248 title "Automatic identification of inertial sensor placement on human body segments during walking" @default.
- W2109226248 cites W2008753476 @default.
- W2109226248 cites W2093489060 @default.
- W2109226248 cites W2133990480 @default.
- W2109226248 cites W2161201723 @default.
- W2109226248 doi "https://doi.org/10.1186/1743-0003-10-31" @default.
- W2109226248 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3651313" @default.
- W2109226248 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23517757" @default.
- W2109226248 hasPublicationYear "2013" @default.
- W2109226248 type Work @default.
- W2109226248 sameAs 2109226248 @default.
- W2109226248 citedByCount "31" @default.
- W2109226248 countsByYear W21092262482013 @default.
- W2109226248 countsByYear W21092262482014 @default.
- W2109226248 countsByYear W21092262482015 @default.
- W2109226248 countsByYear W21092262482016 @default.
- W2109226248 countsByYear W21092262482017 @default.
- W2109226248 countsByYear W21092262482018 @default.
- W2109226248 countsByYear W21092262482019 @default.
- W2109226248 countsByYear W21092262482021 @default.
- W2109226248 countsByYear W21092262482022 @default.
- W2109226248 countsByYear W21092262482023 @default.
- W2109226248 crossrefType "journal-article" @default.
- W2109226248 hasAuthorship W2109226248A5033716406 @default.
- W2109226248 hasAuthorship W2109226248A5050056805 @default.
- W2109226248 hasAuthorship W2109226248A5054441181 @default.
- W2109226248 hasAuthorship W2109226248A5067633889 @default.
- W2109226248 hasAuthorship W2109226248A5080611863 @default.
- W2109226248 hasBestOaLocation W21092262481 @default.
- W2109226248 hasConcept C111919701 @default.
- W2109226248 hasConcept C121332964 @default.
- W2109226248 hasConcept C127413603 @default.
- W2109226248 hasConcept C146978453 @default.
- W2109226248 hasConcept C151800584 @default.
- W2109226248 hasConcept C154945302 @default.
- W2109226248 hasConcept C158488048 @default.
- W2109226248 hasConcept C173386949 @default.
- W2109226248 hasConcept C173906292 @default.
- W2109226248 hasConcept C31972630 @default.
- W2109226248 hasConcept C41008148 @default.
- W2109226248 hasConcept C44154836 @default.
- W2109226248 hasConcept C62520636 @default.
- W2109226248 hasConcept C71924100 @default.
- W2109226248 hasConcept C79061980 @default.
- W2109226248 hasConcept C89805583 @default.
- W2109226248 hasConcept C99508421 @default.
- W2109226248 hasConceptScore W2109226248C111919701 @default.
- W2109226248 hasConceptScore W2109226248C121332964 @default.
- W2109226248 hasConceptScore W2109226248C127413603 @default.
- W2109226248 hasConceptScore W2109226248C146978453 @default.
- W2109226248 hasConceptScore W2109226248C151800584 @default.
- W2109226248 hasConceptScore W2109226248C154945302 @default.
- W2109226248 hasConceptScore W2109226248C158488048 @default.
- W2109226248 hasConceptScore W2109226248C173386949 @default.
- W2109226248 hasConceptScore W2109226248C173906292 @default.
- W2109226248 hasConceptScore W2109226248C31972630 @default.
- W2109226248 hasConceptScore W2109226248C41008148 @default.
- W2109226248 hasConceptScore W2109226248C44154836 @default.
- W2109226248 hasConceptScore W2109226248C62520636 @default.
- W2109226248 hasConceptScore W2109226248C71924100 @default.
- W2109226248 hasConceptScore W2109226248C79061980 @default.
- W2109226248 hasConceptScore W2109226248C89805583 @default.
- W2109226248 hasConceptScore W2109226248C99508421 @default.
- W2109226248 hasIssue "1" @default.
- W2109226248 hasLocation W21092262481 @default.
- W2109226248 hasLocation W21092262482 @default.
- W2109226248 hasLocation W21092262483 @default.
- W2109226248 hasLocation W21092262484 @default.
- W2109226248 hasLocation W21092262485 @default.
- W2109226248 hasOpenAccess W2109226248 @default.
- W2109226248 hasPrimaryLocation W21092262481 @default.
- W2109226248 hasRelatedWork W1973973903 @default.
- W2109226248 hasRelatedWork W2348728718 @default.
- W2109226248 hasRelatedWork W2533988841 @default.
- W2109226248 hasRelatedWork W2898309545 @default.
- W2109226248 hasRelatedWork W3112302614 @default.
- W2109226248 hasRelatedWork W3195533899 @default.
- W2109226248 hasRelatedWork W3215310298 @default.
- W2109226248 hasRelatedWork W4238176532 @default.
- W2109226248 hasRelatedWork W4293105002 @default.
- W2109226248 hasRelatedWork W4297239473 @default.
- W2109226248 hasVolume "10" @default.
- W2109226248 isParatext "false" @default.
- W2109226248 isRetracted "false" @default.
- W2109226248 magId "2109226248" @default.
- W2109226248 workType "article" @default.