Matches in SemOpenAlex for { <https://semopenalex.org/work/W2109233281> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2109233281 endingPage "9" @default.
- W2109233281 startingPage "1" @default.
- W2109233281 abstract "Background. Kleiber’s law describes the quantitative association between whole-body resting energy expenditure (REE, in kcal/d) and body mass ( M , in kg) across mature mammals as REE <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M1><mml:mo>=</mml:mo><mml:mn>70.0</mml:mn><mml:mo>×</mml:mo><mml:msup><mml:mrow><mml:mi>M</mml:mi></mml:mrow><mml:mrow><mml:mn>0.75</mml:mn></mml:mrow></mml:msup></mml:math>. The basis of this empirical function is uncertain. Objectives. The study objective was to establish an organ-tissue level REE model across mammals and to explore the body composition and physiologic basis of Kleiber’s law. Design. We evaluated the hypothesis that REE in mature mammals can be predicted by a combination of two variables: the mass of individual organs/tissues and their corresponding specific resting metabolic rates. Data on the mass of organs with high metabolic rate (i.e., liver, brain, heart, and kidneys) for 111 species ranging in body mass from 0.0075 (shrew) to 6650 kg (elephant) were obtained from a literature review. Results. <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M2><mml:mrow><mml:msub><mml:mrow><mml:mtext>REE</mml:mtext></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math> predicted by the organ-tissue level model was correlated with body mass (correlation <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M3><mml:mi>r</mml:mi><mml:mo>=</mml:mo><mml:mn>0.9975</mml:mn></mml:math>) and resulted in the function <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M4><mml:msub><mml:mrow><mml:mtext>REE</mml:mtext></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:mn mathvariant=normal>66.33</mml:mn><mml:mo>×</mml:mo><mml:msup><mml:mrow><mml:mi>M</mml:mi></mml:mrow><mml:mrow><mml:mn mathvariant=normal>0.754</mml:mn></mml:mrow></mml:msup></mml:math>, with a coefficient and scaling exponent, respectively, close to 70.0 and 0.75 (<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M5><mml:mi>P</mml:mi><mml:mo>></mml:mo><mml:mn>0.05</mml:mn></mml:math>) as observed by Kleiber. There were no differences between <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M6><mml:mrow><mml:msub><mml:mrow><mml:mtext>REE</mml:mtext></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math> and <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M7><mml:mrow><mml:msub><mml:mrow><mml:mtext>REE</mml:mtext></mml:mrow><mml:mrow><mml:mi>k</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math> calculated by Kleiber’s law; <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M8><mml:mrow><mml:msub><mml:mrow><mml:mtext>REE</mml:mtext></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math> was correlated (<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M9><mml:mi>r</mml:mi><mml:mo>=</mml:mo><mml:mn>0.9994</mml:mn></mml:math>) with <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M10><mml:mrow><mml:msub><mml:mrow><mml:mtext>REE</mml:mtext></mml:mrow><mml:mrow><mml:mi>k</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>. The mass-specific <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M11><mml:mrow><mml:msub><mml:mrow><mml:mtext>REE</mml:mtext></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>, that is, <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M12><mml:mrow><mml:msub><mml:mrow><mml:mo stretchy=false>(</mml:mo><mml:mtext>REE</mml:mtext><mml:mo>/</mml:mo><mml:mi>M</mml:mi><mml:mo stretchy=false>)</mml:mo></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>, was correlated with body mass (<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M13><mml:mi>r</mml:mi><mml:mo>=</mml:mo><mml:mn>0.9779</mml:mn></mml:math>) with a scaling exponent −0.246, close to −0.25 as observed with Kleiber’s law. Conclusion. Our findings provide new insights into the organ/tissue energetic components of Kleiber’s law. The observed large rise in REE and lowering of REE/ M from shrew to elephant can be explained by corresponding changes in organ/tissue mass and associated specific metabolic rate." @default.
- W2109233281 created "2016-06-24" @default.
- W2109233281 creator A5014069714 @default.
- W2109233281 creator A5016467704 @default.
- W2109233281 creator A5031848788 @default.
- W2109233281 creator A5065818595 @default.
- W2109233281 date "2012-09-26" @default.
- W2109233281 modified "2023-10-16" @default.
- W2109233281 title "Organ-Tissue Level Model of Resting Energy Expenditure Across Mammals: New Insights into Kleiber's Law" @default.
- W2109233281 cites W1480260620 @default.
- W2109233281 cites W1574634131 @default.
- W2109233281 cites W1806025462 @default.
- W2109233281 cites W1964674045 @default.
- W2109233281 cites W1966221528 @default.
- W2109233281 cites W1969804786 @default.
- W2109233281 cites W1970636319 @default.
- W2109233281 cites W1970881129 @default.
- W2109233281 cites W1978772191 @default.
- W2109233281 cites W2000161132 @default.
- W2109233281 cites W2000902397 @default.
- W2109233281 cites W2062094595 @default.
- W2109233281 cites W2066031415 @default.
- W2109233281 cites W2105673552 @default.
- W2109233281 cites W2144694826 @default.
- W2109233281 cites W2154538954 @default.
- W2109233281 cites W2291164430 @default.
- W2109233281 doi "https://doi.org/10.5402/2012/673050" @default.
- W2109233281 hasPublicationYear "2012" @default.
- W2109233281 type Work @default.
- W2109233281 sameAs 2109233281 @default.
- W2109233281 citedByCount "31" @default.
- W2109233281 countsByYear W21092332812014 @default.
- W2109233281 countsByYear W21092332812015 @default.
- W2109233281 countsByYear W21092332812016 @default.
- W2109233281 countsByYear W21092332812017 @default.
- W2109233281 countsByYear W21092332812018 @default.
- W2109233281 countsByYear W21092332812019 @default.
- W2109233281 countsByYear W21092332812020 @default.
- W2109233281 countsByYear W21092332812021 @default.
- W2109233281 countsByYear W21092332812022 @default.
- W2109233281 crossrefType "journal-article" @default.
- W2109233281 hasAuthorship W2109233281A5014069714 @default.
- W2109233281 hasAuthorship W2109233281A5016467704 @default.
- W2109233281 hasAuthorship W2109233281A5031848788 @default.
- W2109233281 hasAuthorship W2109233281A5065818595 @default.
- W2109233281 hasBestOaLocation W21092332811 @default.
- W2109233281 hasConcept C11413529 @default.
- W2109233281 hasConcept C154945302 @default.
- W2109233281 hasConcept C41008148 @default.
- W2109233281 hasConceptScore W2109233281C11413529 @default.
- W2109233281 hasConceptScore W2109233281C154945302 @default.
- W2109233281 hasConceptScore W2109233281C41008148 @default.
- W2109233281 hasFunder F4320337357 @default.
- W2109233281 hasLocation W21092332811 @default.
- W2109233281 hasOpenAccess W2109233281 @default.
- W2109233281 hasPrimaryLocation W21092332811 @default.
- W2109233281 hasRelatedWork W2051487156 @default.
- W2109233281 hasRelatedWork W2073681303 @default.
- W2109233281 hasRelatedWork W2317200988 @default.
- W2109233281 hasRelatedWork W2358668433 @default.
- W2109233281 hasRelatedWork W2376932109 @default.
- W2109233281 hasRelatedWork W2382290278 @default.
- W2109233281 hasRelatedWork W2386767533 @default.
- W2109233281 hasRelatedWork W2390279801 @default.
- W2109233281 hasRelatedWork W2748952813 @default.
- W2109233281 hasRelatedWork W2899084033 @default.
- W2109233281 hasVolume "2012" @default.
- W2109233281 isParatext "false" @default.
- W2109233281 isRetracted "false" @default.
- W2109233281 magId "2109233281" @default.
- W2109233281 workType "article" @default.