Matches in SemOpenAlex for { <https://semopenalex.org/work/W2109235291> ?p ?o ?g. }
- W2109235291 endingPage "2291" @default.
- W2109235291 startingPage "2265" @default.
- W2109235291 abstract "Phase equilibrium data pertaining to melting of simplified carbonated peridotite in the systems CaO–MgO–SiO2–CO2 and CaO–MgO–Al2O3–SiO2–CO2 at pressures of 10–26 GPa, corresponding to ~300–750 km depths in the Earth, are presented. In both the studied systems, liquid compositions, with changing crystalline phase assemblage, are carbonatitic throughout the studied pressure range. In the system CMS–CO2, melting phase relations are isobarically invariant; liquid is in equilibrium with forsterite + clinoenstatite + clinopyroxene + magnesite, forsterite + majorite + clinopyroxene + magnesite, wadsleyite + majorite + clinopyroxene + magnesite, ringwoodite + majorite + calcium-silicate perovskite + magnesite, magnesium-silicate perovskite + periclase + calcium-silicate perovskite + magnesite at 12, 14, 16, 20, and 26 GPa, respectively. In the system CMAS–CO2, a phase assemblage consisting of forsterite + orthopyroxene + clinopyroxene + magnesite + garnet + melt from 10 to 14 GPa is isobarically invariant. However, owing to the disappearance of orthopyroxene at pressures greater than 14 GPa, from 16 and up to at least 26 GPa, the solidus of simplified carbonated peridotite spans a divariant surface in pressure–temperature space. The liquid coexists with wadsleyite + clinopyroxene + garnet + magnesite, ringwoodite + calcium-silicate perovskite + garnet + magnesite, and magnesium-silicate perovskite + periclase + calcium-silicate perovskite + magnesite at 16, 20, and 26 GPa, respectively. A curious, and as yet unexplained, feature of our study is an abrupt drop in the solidus temperature between 14 and 16 GPa that causes a small amount of melting of carbonated mantle in the Transition Zone of the Earth. In the systems CMS–CO2 and CMAS–CO2 liquid compositions at 16 and 20 GPa are highly calcic bona fide carbonatites; however, these liquids revert to being magnesiocarbonatites at 10–14 and 26 GPa. In the system CMS–CO2, at 16 GPa we locate an isobaric invariant point consisting of wadsleyite + clinopyroxene + anhydrous B + magnesite + melt. The presence of anhydrous B at 16 GPa and 1475°C is interesting, as it lies outside the composition space of the mantle peridotite analog we have studied. However, despite the presence of two highly magnesian silicate crystalline phases, wadsleyite and anhydrous B, at 16 GPa and 1475°C, the liquid composition remains calcic with molar Ca-number [Ca/(Ca + Mg) × 100] of about 63. The melting reactions at 16 and 20 GPa (with or without anhydrous B) show that lime-bearing crystalline silicates play a fairly large part in generating and controlling the composition of the liquids. At 16 GPa, in the system CMS–CO2, we also report an experimental run at 1575°C, in which liquid coexists with only wadsleyite and majorite. The liquid composition is less calcic (Ca-number 54) than that for other runs at lower temperatures, but is still more calcic than liquids at 10–14 and 26 GPa in both the studied systems. At present, the likely cause for these changes in the reported phase relations is not known. For normally assumed mantle temperatures, melting in the Transition Zone of the Earth, owing to the presence of carbonate, is probably unavoidable. The depth range of the drop in the carbonated peridotite solidus closely matches that of commonly observed low seismic velocities at ~400–600 km depth in the Earth." @default.
- W2109235291 created "2016-06-24" @default.
- W2109235291 creator A5000082320 @default.
- W2109235291 creator A5001129915 @default.
- W2109235291 creator A5022574939 @default.
- W2109235291 date "2011-10-31" @default.
- W2109235291 modified "2023-10-18" @default.
- W2109235291 title "Melting Phase Relations of Simplified Carbonated Peridotite at 12-26 GPa in the Systems CaO-MgO-SiO2-CO2 and CaO-MgO-Al2O3-SiO2-CO2: Highly Calcic Magmas in the Transition Zone of the Earth" @default.
- W2109235291 cites W1860345605 @default.
- W2109235291 cites W1966086724 @default.
- W2109235291 cites W1967208619 @default.
- W2109235291 cites W1967756102 @default.
- W2109235291 cites W1970440568 @default.
- W2109235291 cites W1974872027 @default.
- W2109235291 cites W1975175724 @default.
- W2109235291 cites W1979513085 @default.
- W2109235291 cites W1979772238 @default.
- W2109235291 cites W1979949574 @default.
- W2109235291 cites W1980726283 @default.
- W2109235291 cites W1981378138 @default.
- W2109235291 cites W1988708839 @default.
- W2109235291 cites W1989637085 @default.
- W2109235291 cites W1995878469 @default.
- W2109235291 cites W2002443197 @default.
- W2109235291 cites W2006844676 @default.
- W2109235291 cites W2008283020 @default.
- W2109235291 cites W2011482531 @default.
- W2109235291 cites W2017528031 @default.
- W2109235291 cites W2021442664 @default.
- W2109235291 cites W2022974215 @default.
- W2109235291 cites W2024217443 @default.
- W2109235291 cites W2030433511 @default.
- W2109235291 cites W2031277259 @default.
- W2109235291 cites W2033714168 @default.
- W2109235291 cites W2034481990 @default.
- W2109235291 cites W2037895754 @default.
- W2109235291 cites W2045084270 @default.
- W2109235291 cites W2045696333 @default.
- W2109235291 cites W2050757534 @default.
- W2109235291 cites W2051991171 @default.
- W2109235291 cites W2054824125 @default.
- W2109235291 cites W2055106424 @default.
- W2109235291 cites W2062426713 @default.
- W2109235291 cites W2068265958 @default.
- W2109235291 cites W2068917411 @default.
- W2109235291 cites W2072203934 @default.
- W2109235291 cites W2075171131 @default.
- W2109235291 cites W2076575602 @default.
- W2109235291 cites W2077011334 @default.
- W2109235291 cites W2078300107 @default.
- W2109235291 cites W2088095502 @default.
- W2109235291 cites W2092508377 @default.
- W2109235291 cites W2093087370 @default.
- W2109235291 cites W2093166524 @default.
- W2109235291 cites W2105942108 @default.
- W2109235291 cites W2110809059 @default.
- W2109235291 cites W2116858346 @default.
- W2109235291 cites W2128090424 @default.
- W2109235291 cites W2128847471 @default.
- W2109235291 cites W2130435119 @default.
- W2109235291 cites W2130992340 @default.
- W2109235291 cites W2132099600 @default.
- W2109235291 cites W2143625551 @default.
- W2109235291 cites W2149682233 @default.
- W2109235291 cites W2150369380 @default.
- W2109235291 cites W2153456200 @default.
- W2109235291 cites W2165792557 @default.
- W2109235291 cites W2165920301 @default.
- W2109235291 cites W2170746611 @default.
- W2109235291 doi "https://doi.org/10.1093/petrology/egr048" @default.
- W2109235291 hasPublicationYear "2011" @default.
- W2109235291 type Work @default.
- W2109235291 sameAs 2109235291 @default.
- W2109235291 citedByCount "26" @default.
- W2109235291 countsByYear W21092352912012 @default.
- W2109235291 countsByYear W21092352912013 @default.
- W2109235291 countsByYear W21092352912014 @default.
- W2109235291 countsByYear W21092352912015 @default.
- W2109235291 countsByYear W21092352912016 @default.
- W2109235291 countsByYear W21092352912017 @default.
- W2109235291 countsByYear W21092352912018 @default.
- W2109235291 countsByYear W21092352912019 @default.
- W2109235291 countsByYear W21092352912020 @default.
- W2109235291 countsByYear W21092352912021 @default.
- W2109235291 countsByYear W21092352912022 @default.
- W2109235291 countsByYear W21092352912023 @default.
- W2109235291 crossrefType "journal-article" @default.
- W2109235291 hasAuthorship W2109235291A5000082320 @default.
- W2109235291 hasAuthorship W2109235291A5001129915 @default.
- W2109235291 hasAuthorship W2109235291A5022574939 @default.
- W2109235291 hasConcept C127313418 @default.
- W2109235291 hasConcept C127413603 @default.
- W2109235291 hasConcept C151730666 @default.
- W2109235291 hasConcept C159985019 @default.
- W2109235291 hasConcept C160804572 @default.
- W2109235291 hasConcept C163686574 @default.
- W2109235291 hasConcept C17409809 @default.
- W2109235291 hasConcept C191897082 @default.