Matches in SemOpenAlex for { <https://semopenalex.org/work/W2109303941> ?p ?o ?g. }
- W2109303941 endingPage "143" @default.
- W2109303941 startingPage "123" @default.
- W2109303941 abstract "Abstract Land surface models (LSMs) need to be coupled with atmospheric general circulation models (GCMs) to adequately simulate the exchanges of energy, water, and carbon between the atmosphere and terrestrial surfaces. The heterogeneity of the land surface and its interaction with temporally and spatially varying meteorological conditions result in nonlinear effects on fluxes of energy, water, and carbon, making it challenging to scale these fluxes accurately. The issue of up-scaling remains one of the critical unsolved problems in the parameterization of subgrid-scale fluxes in coupled LSM and GCM models. A new distributed LSM, the Ecosystem–Atmosphere Simulation Scheme (EASS) was developed and coupled with the atmospheric Global Environmental Multiscale model (GEM) to simulate energy, water, and carbon fluxes over Canada’s landmass through the use of remote sensing and ancillary data. Two approaches (lumped case and distributed case) for handling subgrid heterogeneity were used to evaluate the effect of land-cover heterogeneity on regional flux simulations based on remote sensing. Online runs for a week in August 2003 provided an opportunity to investigate model performance and spatial scaling issues. Comparisons of simulated results with available tower observations (five sites) across an east–west transect over Canada’s southern forest regions indicate that the model is reasonably successful in capturing both the spatial and temporal variations in carbon and energy fluxes, although there were still some biases in estimates of latent and sensible heat fluxes between the simulations and the tower observations. Moreover, the latent and sensible heat fluxes were found to be better modeled in the coupled EASS–GEM system than in the uncoupled GEM. There are marked spatial variations in simulated fluxes over Canada’s landmass. These patterns of spatial variation closely follow vegetation-cover types as well as leaf area index, both of which are highly correlated with the underlying soil types, soil moisture conditions, and soil carbon pools. The surface fluxes modeled by the two up-scaling approaches (lumped and distributed cases) differ by 5%–15% on average and by up to 15%–25% in highly heterogeneous regions. This suggests that different ways of treating subgrid land surface heterogeneities could lead to noticeable biases in model output." @default.
- W2109303941 created "2016-06-24" @default.
- W2109303941 creator A5001458976 @default.
- W2109303941 creator A5011403859 @default.
- W2109303941 creator A5013277623 @default.
- W2109303941 creator A5018624118 @default.
- W2109303941 creator A5025093003 @default.
- W2109303941 creator A5056006246 @default.
- W2109303941 creator A5086226857 @default.
- W2109303941 date "2007-04-01" @default.
- W2109303941 modified "2023-09-24" @default.
- W2109303941 title "Modeling and Scaling Coupled Energy, Water, and Carbon Fluxes Based on Remote Sensing: An Application to Canada’s Landmass" @default.
- W2109303941 cites W1626255624 @default.
- W2109303941 cites W1975682355 @default.
- W2109303941 cites W1978992784 @default.
- W2109303941 cites W1987297716 @default.
- W2109303941 cites W1990439978 @default.
- W2109303941 cites W1998776407 @default.
- W2109303941 cites W1999975687 @default.
- W2109303941 cites W2001909783 @default.
- W2109303941 cites W2005069463 @default.
- W2109303941 cites W2006563460 @default.
- W2109303941 cites W2010036012 @default.
- W2109303941 cites W2012872901 @default.
- W2109303941 cites W2013288042 @default.
- W2109303941 cites W2015732919 @default.
- W2109303941 cites W2016338115 @default.
- W2109303941 cites W2018330599 @default.
- W2109303941 cites W2025688578 @default.
- W2109303941 cites W2026836154 @default.
- W2109303941 cites W2028053705 @default.
- W2109303941 cites W2034037515 @default.
- W2109303941 cites W2035741722 @default.
- W2109303941 cites W2050753507 @default.
- W2109303941 cites W2052786465 @default.
- W2109303941 cites W2055955499 @default.
- W2109303941 cites W2061204142 @default.
- W2109303941 cites W2063595208 @default.
- W2109303941 cites W2076607423 @default.
- W2109303941 cites W2083053342 @default.
- W2109303941 cites W2088292560 @default.
- W2109303941 cites W2093065735 @default.
- W2109303941 cites W2093756001 @default.
- W2109303941 cites W2098653553 @default.
- W2109303941 cites W2120148750 @default.
- W2109303941 cites W2123720514 @default.
- W2109303941 cites W2136904626 @default.
- W2109303941 cites W2153828129 @default.
- W2109303941 cites W2156076254 @default.
- W2109303941 cites W2157144502 @default.
- W2109303941 cites W2158834676 @default.
- W2109303941 cites W2165113845 @default.
- W2109303941 cites W2173632050 @default.
- W2109303941 cites W2174784024 @default.
- W2109303941 cites W2175429871 @default.
- W2109303941 cites W4253768378 @default.
- W2109303941 cites W4298466131 @default.
- W2109303941 cites W68545493 @default.
- W2109303941 doi "https://doi.org/10.1175/jhm566.1" @default.
- W2109303941 hasPublicationYear "2007" @default.
- W2109303941 type Work @default.
- W2109303941 sameAs 2109303941 @default.
- W2109303941 citedByCount "50" @default.
- W2109303941 countsByYear W21093039412012 @default.
- W2109303941 countsByYear W21093039412013 @default.
- W2109303941 countsByYear W21093039412014 @default.
- W2109303941 countsByYear W21093039412015 @default.
- W2109303941 countsByYear W21093039412016 @default.
- W2109303941 countsByYear W21093039412017 @default.
- W2109303941 countsByYear W21093039412018 @default.
- W2109303941 countsByYear W21093039412019 @default.
- W2109303941 countsByYear W21093039412021 @default.
- W2109303941 countsByYear W21093039412022 @default.
- W2109303941 crossrefType "journal-article" @default.
- W2109303941 hasAuthorship W2109303941A5001458976 @default.
- W2109303941 hasAuthorship W2109303941A5011403859 @default.
- W2109303941 hasAuthorship W2109303941A5013277623 @default.
- W2109303941 hasAuthorship W2109303941A5018624118 @default.
- W2109303941 hasAuthorship W2109303941A5025093003 @default.
- W2109303941 hasAuthorship W2109303941A5056006246 @default.
- W2109303941 hasAuthorship W2109303941A5086226857 @default.
- W2109303941 hasBestOaLocation W21093039411 @default.
- W2109303941 hasConcept C111368507 @default.
- W2109303941 hasConcept C127313418 @default.
- W2109303941 hasConcept C153294291 @default.
- W2109303941 hasConcept C205649164 @default.
- W2109303941 hasConcept C2524010 @default.
- W2109303941 hasConcept C33923547 @default.
- W2109303941 hasConcept C39432304 @default.
- W2109303941 hasConcept C49204034 @default.
- W2109303941 hasConcept C58024561 @default.
- W2109303941 hasConcept C59242433 @default.
- W2109303941 hasConcept C62649853 @default.
- W2109303941 hasConcept C65440619 @default.
- W2109303941 hasConcept C69661492 @default.
- W2109303941 hasConcept C91586092 @default.
- W2109303941 hasConcept C99844830 @default.
- W2109303941 hasConceptScore W2109303941C111368507 @default.