Matches in SemOpenAlex for { <https://semopenalex.org/work/W2109371576> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2109371576 endingPage "480" @default.
- W2109371576 startingPage "475" @default.
- W2109371576 abstract "Abstract. Nowadays the artificial intelligent algorithms has considered in GIS and remote sensing. Genetic algorithm and artificial neural network are two intelligent methods that are used for optimizing of image processing programs such as edge extraction and etc. these algorithms are very useful for solving of complex program. In this paper, the ability and application of genetic algorithm and artificial neural network in geospatial production process like geometric modelling of satellite images for ortho photo generation and height interpolation in raster Digital Terrain Model production process is discussed. In first, the geometric potential of Ikonos-2 and Worldview-2 with rational functions, 2D & 3D polynomials were tested. Also comprehensive experiments have been carried out to evaluate the viability of the genetic algorithm for optimization of rational function, 2D & 3D polynomials. Considering the quality of Ground Control Points, the accuracy (RMSE) with genetic algorithm and 3D polynomials method for Ikonos-2 Geo image was 0.508 pixel sizes and the accuracy (RMSE) with GA algorithm and rational function method for Worldview-2 image was 0.930 pixel sizes. For more another optimization artificial intelligent methods, neural networks were used. With the use of perceptron network in Worldview-2 image, a result of 0.84 pixel sizes with 4 neurons in middle layer was gained. The final conclusion was that with artificial intelligent algorithms it is possible to optimize the existing models and have better results than usual ones. Finally the artificial intelligence methods, like genetic algorithms as well as neural networks, were examined on sample data for optimizing interpolation and for generating Digital Terrain Models. The results then were compared with existing conventional methods and it appeared that these methods have a high capacity in heights interpolation and that using these networks for interpolating and optimizing the weighting methods based on inverse distance leads to a high accurate estimation of heights." @default.
- W2109371576 created "2016-06-24" @default.
- W2109371576 creator A5034870289 @default.
- W2109371576 creator A5040600937 @default.
- W2109371576 date "2013-10-29" @default.
- W2109371576 modified "2023-10-03" @default.
- W2109371576 title "ORTHO IMAGE AND DTM GENERATION WITH INTELLIGENT METHODS" @default.
- W2109371576 cites W1539592020 @default.
- W2109371576 cites W1544329015 @default.
- W2109371576 cites W1824939247 @default.
- W2109371576 cites W1983775324 @default.
- W2109371576 cites W2050532826 @default.
- W2109371576 cites W2052222034 @default.
- W2109371576 cites W2055675966 @default.
- W2109371576 cites W2077981419 @default.
- W2109371576 cites W2089055951 @default.
- W2109371576 cites W2300117502 @default.
- W2109371576 doi "https://doi.org/10.5194/isprsarchives-xl-1-w3-475-2013" @default.
- W2109371576 hasPublicationYear "2013" @default.
- W2109371576 type Work @default.
- W2109371576 sameAs 2109371576 @default.
- W2109371576 citedByCount "1" @default.
- W2109371576 countsByYear W21093715762014 @default.
- W2109371576 crossrefType "journal-article" @default.
- W2109371576 hasAuthorship W2109371576A5034870289 @default.
- W2109371576 hasAuthorship W2109371576A5040600937 @default.
- W2109371576 hasBestOaLocation W21093715761 @default.
- W2109371576 hasConcept C105795698 @default.
- W2109371576 hasConcept C11413529 @default.
- W2109371576 hasConcept C119857082 @default.
- W2109371576 hasConcept C139945424 @default.
- W2109371576 hasConcept C154945302 @default.
- W2109371576 hasConcept C160633673 @default.
- W2109371576 hasConcept C33923547 @default.
- W2109371576 hasConcept C41008148 @default.
- W2109371576 hasConcept C50644808 @default.
- W2109371576 hasConcept C60908668 @default.
- W2109371576 hasConcept C8880873 @default.
- W2109371576 hasConceptScore W2109371576C105795698 @default.
- W2109371576 hasConceptScore W2109371576C11413529 @default.
- W2109371576 hasConceptScore W2109371576C119857082 @default.
- W2109371576 hasConceptScore W2109371576C139945424 @default.
- W2109371576 hasConceptScore W2109371576C154945302 @default.
- W2109371576 hasConceptScore W2109371576C160633673 @default.
- W2109371576 hasConceptScore W2109371576C33923547 @default.
- W2109371576 hasConceptScore W2109371576C41008148 @default.
- W2109371576 hasConceptScore W2109371576C50644808 @default.
- W2109371576 hasConceptScore W2109371576C60908668 @default.
- W2109371576 hasConceptScore W2109371576C8880873 @default.
- W2109371576 hasLocation W21093715761 @default.
- W2109371576 hasOpenAccess W2109371576 @default.
- W2109371576 hasPrimaryLocation W21093715761 @default.
- W2109371576 hasRelatedWork W2016080341 @default.
- W2109371576 hasRelatedWork W2091943352 @default.
- W2109371576 hasRelatedWork W2356957943 @default.
- W2109371576 hasRelatedWork W2359549665 @default.
- W2109371576 hasRelatedWork W2382761789 @default.
- W2109371576 hasRelatedWork W2386058197 @default.
- W2109371576 hasRelatedWork W2392110728 @default.
- W2109371576 hasRelatedWork W2749461815 @default.
- W2109371576 hasRelatedWork W2883133240 @default.
- W2109371576 hasRelatedWork W4281693556 @default.
- W2109371576 hasVolume "XL-1/W3" @default.
- W2109371576 isParatext "false" @default.
- W2109371576 isRetracted "false" @default.
- W2109371576 magId "2109371576" @default.
- W2109371576 workType "article" @default.