Matches in SemOpenAlex for { <https://semopenalex.org/work/W2109392365> ?p ?o ?g. }
- W2109392365 endingPage "900" @default.
- W2109392365 startingPage "892" @default.
- W2109392365 abstract "As water resources are limited and the demand for agricultural products increases, it becomes increasingly important to use irrigation water optimally. At a farm scale, farmer's have a particularly strong incentive to optimize their irrigation water use when the volume of water available over a season is production limiting. In this situation, a farmer's goal is to maximize farm profit, by adjusting when and where irrigation water is used. However, making the very best decisions about when and where to irrigate is not easy, since these daily decisions require consideration of the entire remaining irrigation season. Future rainfall uncertainty further complicates decisions on when and which crops should be subjected to water stress. This paper presents an innovative on-farm irrigation scheduling decision support method called the Canterbury irrigation scheduler (CIS) that is suitable when seasonal water availability is limited. Previous optimal scheduling methods generally use stochastic dynamic programming, which requires over-simplistic plant models, limiting their practical usefulness. The CIS method improves on previous methods because it accommodates realistic plant models. Future farm profit (the objective function) is calculated using a time-series simulation model of the farm. Different irrigation management strategies are tested using the farm simulation model. The irrigation strategies are defined by a set of decision variables, and the decision variables are optimized using simulated annealing. The result of this optimization is an irrigation strategy that maximizes the expected future farm profit. This process is repeated several times during the irrigation season using the CIS method, and the optimal irrigation strategy is modified and improved using updated climate and soil moisture information. The ability of the CIS method to produce near optimal decisions was demonstrated by a comparison to previous stochastic dynamic programming schedulers. A second case study shows the CIS method can incorporate more realistic farm models than is possible when using stochastic dynamic programming. This case study used the FarmWi$e/APSIM model developed by CSIRO, Australia. Results show that when seasonal water limit is the primary constraint on water availability, the CIS could increase pasture yield revenue in Canterbury (New Zealand) in the order of 10%, compared with scheduling irrigation using current state of the art scheduling practice." @default.
- W2109392365 created "2016-06-24" @default.
- W2109392365 creator A5040639400 @default.
- W2109392365 creator A5089216694 @default.
- W2109392365 creator A5090919612 @default.
- W2109392365 date "2010-06-01" @default.
- W2109392365 modified "2023-10-15" @default.
- W2109392365 title "Optimal on-farm irrigation scheduling with a seasonal water limit using simulated annealing" @default.
- W2109392365 cites W1972206116 @default.
- W2109392365 cites W1988087029 @default.
- W2109392365 cites W1999405816 @default.
- W2109392365 cites W2013338259 @default.
- W2109392365 cites W2046475971 @default.
- W2109392365 cites W2052219793 @default.
- W2109392365 cites W2058439829 @default.
- W2109392365 cites W2077326659 @default.
- W2109392365 cites W2083345093 @default.
- W2109392365 cites W2088590934 @default.
- W2109392365 cites W2108150474 @default.
- W2109392365 cites W2116812586 @default.
- W2109392365 cites W2132231626 @default.
- W2109392365 cites W2171074980 @default.
- W2109392365 doi "https://doi.org/10.1016/j.agwat.2010.01.020" @default.
- W2109392365 hasPublicationYear "2010" @default.
- W2109392365 type Work @default.
- W2109392365 sameAs 2109392365 @default.
- W2109392365 citedByCount "59" @default.
- W2109392365 countsByYear W21093923652013 @default.
- W2109392365 countsByYear W21093923652014 @default.
- W2109392365 countsByYear W21093923652015 @default.
- W2109392365 countsByYear W21093923652016 @default.
- W2109392365 countsByYear W21093923652017 @default.
- W2109392365 countsByYear W21093923652018 @default.
- W2109392365 countsByYear W21093923652019 @default.
- W2109392365 countsByYear W21093923652020 @default.
- W2109392365 countsByYear W21093923652021 @default.
- W2109392365 countsByYear W21093923652022 @default.
- W2109392365 countsByYear W21093923652023 @default.
- W2109392365 crossrefType "journal-article" @default.
- W2109392365 hasAuthorship W2109392365A5040639400 @default.
- W2109392365 hasAuthorship W2109392365A5089216694 @default.
- W2109392365 hasAuthorship W2109392365A5090919612 @default.
- W2109392365 hasBestOaLocation W21093923652 @default.
- W2109392365 hasConcept C108215451 @default.
- W2109392365 hasConcept C110158866 @default.
- W2109392365 hasConcept C112077630 @default.
- W2109392365 hasConcept C118518473 @default.
- W2109392365 hasConcept C126255220 @default.
- W2109392365 hasConcept C126980161 @default.
- W2109392365 hasConcept C127413603 @default.
- W2109392365 hasConcept C136325355 @default.
- W2109392365 hasConcept C144237770 @default.
- W2109392365 hasConcept C153823671 @default.
- W2109392365 hasConcept C162324750 @default.
- W2109392365 hasConcept C166957645 @default.
- W2109392365 hasConcept C175444787 @default.
- W2109392365 hasConcept C176205827 @default.
- W2109392365 hasConcept C181622380 @default.
- W2109392365 hasConcept C188198153 @default.
- W2109392365 hasConcept C18903297 @default.
- W2109392365 hasConcept C195092306 @default.
- W2109392365 hasConcept C205649164 @default.
- W2109392365 hasConcept C206729178 @default.
- W2109392365 hasConcept C2777589951 @default.
- W2109392365 hasConcept C33923547 @default.
- W2109392365 hasConcept C39432304 @default.
- W2109392365 hasConcept C41008148 @default.
- W2109392365 hasConcept C524765639 @default.
- W2109392365 hasConcept C78519656 @default.
- W2109392365 hasConcept C86803240 @default.
- W2109392365 hasConcept C88463610 @default.
- W2109392365 hasConcept C88862950 @default.
- W2109392365 hasConceptScore W2109392365C108215451 @default.
- W2109392365 hasConceptScore W2109392365C110158866 @default.
- W2109392365 hasConceptScore W2109392365C112077630 @default.
- W2109392365 hasConceptScore W2109392365C118518473 @default.
- W2109392365 hasConceptScore W2109392365C126255220 @default.
- W2109392365 hasConceptScore W2109392365C126980161 @default.
- W2109392365 hasConceptScore W2109392365C127413603 @default.
- W2109392365 hasConceptScore W2109392365C136325355 @default.
- W2109392365 hasConceptScore W2109392365C144237770 @default.
- W2109392365 hasConceptScore W2109392365C153823671 @default.
- W2109392365 hasConceptScore W2109392365C162324750 @default.
- W2109392365 hasConceptScore W2109392365C166957645 @default.
- W2109392365 hasConceptScore W2109392365C175444787 @default.
- W2109392365 hasConceptScore W2109392365C176205827 @default.
- W2109392365 hasConceptScore W2109392365C181622380 @default.
- W2109392365 hasConceptScore W2109392365C188198153 @default.
- W2109392365 hasConceptScore W2109392365C18903297 @default.
- W2109392365 hasConceptScore W2109392365C195092306 @default.
- W2109392365 hasConceptScore W2109392365C205649164 @default.
- W2109392365 hasConceptScore W2109392365C206729178 @default.
- W2109392365 hasConceptScore W2109392365C2777589951 @default.
- W2109392365 hasConceptScore W2109392365C33923547 @default.
- W2109392365 hasConceptScore W2109392365C39432304 @default.
- W2109392365 hasConceptScore W2109392365C41008148 @default.
- W2109392365 hasConceptScore W2109392365C524765639 @default.
- W2109392365 hasConceptScore W2109392365C78519656 @default.