Matches in SemOpenAlex for { <https://semopenalex.org/work/W2109402244> ?p ?o ?g. }
- W2109402244 abstract "A general formalism for the evaluation of time-reversal odd parton distributions is applied here to calculate the Boer-Mulders function. The same formalism when applied to evaluate the Sivers function led to results which fulfill the Burkardt sum rule quite well. The calculation here has been performed for two different models of proton structure: a constituent quark model and the MIT bag model. In the latter case, important differences are found with respect to a previous evaluation in the same framework, a feature already encountered in the calculation of the Sivers function. The results obtained are consistent with the present wisdom, i.e., the contributions for the $u$ and $d$ flavors turn out to have the same sign, following the pattern suggested analyzing the model-independent features of the impact parameter dependent generalized parton distributions. It is therefore confirmed that the present approach is suitable for the analysis of time-reversal odd distribution functions. A critical comparison between the outcomes of the two models, as well as between the results of the calculations for the Sivers and Boer-Mulders functions, is also carried out." @default.
- W2109402244 created "2016-06-24" @default.
- W2109402244 creator A5012029218 @default.
- W2109402244 creator A5034889541 @default.
- W2109402244 creator A5082576730 @default.
- W2109402244 date "2009-10-27" @default.
- W2109402244 modified "2023-09-23" @default.
- W2109402244 title "Analyzing the Boer-Mulders function within different quark models" @default.
- W2109402244 cites W1716885094 @default.
- W2109402244 cites W1966547405 @default.
- W2109402244 cites W1972979816 @default.
- W2109402244 cites W1979527539 @default.
- W2109402244 cites W1981498814 @default.
- W2109402244 cites W1984478853 @default.
- W2109402244 cites W1988580399 @default.
- W2109402244 cites W1992580639 @default.
- W2109402244 cites W1997910085 @default.
- W2109402244 cites W2002188901 @default.
- W2109402244 cites W2005613981 @default.
- W2109402244 cites W2008320437 @default.
- W2109402244 cites W2014843128 @default.
- W2109402244 cites W2015402415 @default.
- W2109402244 cites W2016634180 @default.
- W2109402244 cites W2019299189 @default.
- W2109402244 cites W2024787216 @default.
- W2109402244 cites W2029009337 @default.
- W2109402244 cites W2030223285 @default.
- W2109402244 cites W2033496958 @default.
- W2109402244 cites W2040551391 @default.
- W2109402244 cites W2045925921 @default.
- W2109402244 cites W2047865284 @default.
- W2109402244 cites W2052740454 @default.
- W2109402244 cites W2054494310 @default.
- W2109402244 cites W2054906215 @default.
- W2109402244 cites W2067998973 @default.
- W2109402244 cites W2084377638 @default.
- W2109402244 cites W2089258956 @default.
- W2109402244 cites W2092191610 @default.
- W2109402244 cites W2093602712 @default.
- W2109402244 cites W2103895497 @default.
- W2109402244 cites W2112604408 @default.
- W2109402244 cites W2113103488 @default.
- W2109402244 cites W2122094278 @default.
- W2109402244 cites W2123749971 @default.
- W2109402244 cites W2130173444 @default.
- W2109402244 cites W2131306941 @default.
- W2109402244 cites W2132478028 @default.
- W2109402244 cites W2135734579 @default.
- W2109402244 cites W2137549325 @default.
- W2109402244 cites W2145126932 @default.
- W2109402244 cites W2145965499 @default.
- W2109402244 cites W2149238093 @default.
- W2109402244 cites W2149602389 @default.
- W2109402244 cites W2155707367 @default.
- W2109402244 cites W2157878030 @default.
- W2109402244 cites W2163562019 @default.
- W2109402244 cites W2169992865 @default.
- W2109402244 cites W2170082375 @default.
- W2109402244 cites W2174029682 @default.
- W2109402244 cites W2505808119 @default.
- W2109402244 cites W2763514600 @default.
- W2109402244 cites W3099224330 @default.
- W2109402244 cites W3100500980 @default.
- W2109402244 cites W3100936872 @default.
- W2109402244 cites W3101968970 @default.
- W2109402244 cites W3121170252 @default.
- W2109402244 cites W3121310674 @default.
- W2109402244 cites W3196333269 @default.
- W2109402244 cites W4233060462 @default.
- W2109402244 cites W4241883877 @default.
- W2109402244 doi "https://doi.org/10.1103/physrevd.80.074032" @default.
- W2109402244 hasPublicationYear "2009" @default.
- W2109402244 type Work @default.
- W2109402244 sameAs 2109402244 @default.
- W2109402244 citedByCount "34" @default.
- W2109402244 countsByYear W21094022442012 @default.
- W2109402244 countsByYear W21094022442013 @default.
- W2109402244 countsByYear W21094022442014 @default.
- W2109402244 countsByYear W21094022442015 @default.
- W2109402244 countsByYear W21094022442016 @default.
- W2109402244 countsByYear W21094022442017 @default.
- W2109402244 countsByYear W21094022442018 @default.
- W2109402244 countsByYear W21094022442019 @default.
- W2109402244 countsByYear W21094022442020 @default.
- W2109402244 countsByYear W21094022442022 @default.
- W2109402244 crossrefType "journal-article" @default.
- W2109402244 hasAuthorship W2109402244A5012029218 @default.
- W2109402244 hasAuthorship W2109402244A5034889541 @default.
- W2109402244 hasAuthorship W2109402244A5082576730 @default.
- W2109402244 hasBestOaLocation W21094022442 @default.
- W2109402244 hasConcept C109214941 @default.
- W2109402244 hasConcept C121332964 @default.
- W2109402244 hasConcept C14036430 @default.
- W2109402244 hasConcept C185544564 @default.
- W2109402244 hasConcept C41008148 @default.
- W2109402244 hasConcept C7602139 @default.
- W2109402244 hasConcept C86803240 @default.
- W2109402244 hasConcept C95444343 @default.
- W2109402244 hasConceptScore W2109402244C109214941 @default.
- W2109402244 hasConceptScore W2109402244C121332964 @default.