Matches in SemOpenAlex for { <https://semopenalex.org/work/W2109443444> ?p ?o ?g. }
- W2109443444 endingPage "114" @default.
- W2109443444 startingPage "95" @default.
- W2109443444 abstract "In two previous papers by Neymeyr [Linear Algebra Appl. 322 (1–3) (2001) 61; 322 (1–3) (2001) 87], a sharp, but cumbersome, convergence rate estimate was proved for a simple preconditioned eigensolver, which computes the smallest eigenvalue together with the corresponding eigenvector of a symmetric positive definite matrix, using a preconditioned gradient minimization of the Rayleigh quotient. In the present paper, we discover and prove a much shorter and more elegant (but still sharp in decisive quantities) convergence rate estimate of the same method that also holds for a generalized symmetric definite eigenvalue problem. The new estimate is simple enough to stimulate a search for a more straightforward proof technique that could be helpful to investigate such a practically important method as the locally optimal block preconditioned conjugate gradient eigensolver." @default.
- W2109443444 created "2016-06-24" @default.
- W2109443444 creator A5012778133 @default.
- W2109443444 creator A5033862489 @default.
- W2109443444 date "2003-01-01" @default.
- W2109443444 modified "2023-09-26" @default.
- W2109443444 title "A geometric theory for preconditioned inverse iteration III: A short and sharp convergence estimate for generalized eigenvalue problems" @default.
- W2109443444 cites W1674304619 @default.
- W2109443444 cites W1963738920 @default.
- W2109443444 cites W1978110679 @default.
- W2109443444 cites W1990786759 @default.
- W2109443444 cites W1997862149 @default.
- W2109443444 cites W2019715448 @default.
- W2109443444 cites W2024051376 @default.
- W2109443444 cites W2027436456 @default.
- W2109443444 cites W2037034729 @default.
- W2109443444 cites W2040101456 @default.
- W2109443444 cites W2046249517 @default.
- W2109443444 cites W2047353059 @default.
- W2109443444 cites W2049348317 @default.
- W2109443444 cites W2051142108 @default.
- W2109443444 cites W2064003621 @default.
- W2109443444 cites W2067159361 @default.
- W2109443444 cites W2069340633 @default.
- W2109443444 cites W2078369406 @default.
- W2109443444 cites W2084664249 @default.
- W2109443444 cites W2086160340 @default.
- W2109443444 cites W2087283353 @default.
- W2109443444 cites W2088847993 @default.
- W2109443444 cites W2092010997 @default.
- W2109443444 cites W2092320654 @default.
- W2109443444 cites W2101700471 @default.
- W2109443444 cites W2106311058 @default.
- W2109443444 cites W2111108058 @default.
- W2109443444 cites W2129743302 @default.
- W2109443444 cites W2142184851 @default.
- W2109443444 cites W2156553331 @default.
- W2109443444 cites W2328789213 @default.
- W2109443444 cites W2985152630 @default.
- W2109443444 cites W4214711962 @default.
- W2109443444 cites W4253172254 @default.
- W2109443444 cites W4253384213 @default.
- W2109443444 doi "https://doi.org/10.1016/s0024-3795(01)00461-x" @default.
- W2109443444 hasPublicationYear "2003" @default.
- W2109443444 type Work @default.
- W2109443444 sameAs 2109443444 @default.
- W2109443444 citedByCount "82" @default.
- W2109443444 countsByYear W21094434442012 @default.
- W2109443444 countsByYear W21094434442013 @default.
- W2109443444 countsByYear W21094434442014 @default.
- W2109443444 countsByYear W21094434442015 @default.
- W2109443444 countsByYear W21094434442016 @default.
- W2109443444 countsByYear W21094434442018 @default.
- W2109443444 countsByYear W21094434442019 @default.
- W2109443444 countsByYear W21094434442020 @default.
- W2109443444 countsByYear W21094434442021 @default.
- W2109443444 countsByYear W21094434442022 @default.
- W2109443444 countsByYear W21094434442023 @default.
- W2109443444 crossrefType "journal-article" @default.
- W2109443444 hasAuthorship W2109443444A5012778133 @default.
- W2109443444 hasAuthorship W2109443444A5033862489 @default.
- W2109443444 hasBestOaLocation W21094434441 @default.
- W2109443444 hasConcept C106487976 @default.
- W2109443444 hasConcept C111472728 @default.
- W2109443444 hasConcept C11413529 @default.
- W2109443444 hasConcept C117586675 @default.
- W2109443444 hasConcept C121332964 @default.
- W2109443444 hasConcept C127162648 @default.
- W2109443444 hasConcept C138885662 @default.
- W2109443444 hasConcept C139352143 @default.
- W2109443444 hasConcept C158693339 @default.
- W2109443444 hasConcept C159694833 @default.
- W2109443444 hasConcept C159985019 @default.
- W2109443444 hasConcept C162324750 @default.
- W2109443444 hasConcept C167431342 @default.
- W2109443444 hasConcept C169756996 @default.
- W2109443444 hasConcept C192562407 @default.
- W2109443444 hasConcept C192702615 @default.
- W2109443444 hasConcept C207467116 @default.
- W2109443444 hasConcept C2505209 @default.
- W2109443444 hasConcept C2524010 @default.
- W2109443444 hasConcept C2777303404 @default.
- W2109443444 hasConcept C2778158742 @default.
- W2109443444 hasConcept C2780586882 @default.
- W2109443444 hasConcept C28826006 @default.
- W2109443444 hasConcept C31258907 @default.
- W2109443444 hasConcept C33923547 @default.
- W2109443444 hasConcept C41008148 @default.
- W2109443444 hasConcept C49712288 @default.
- W2109443444 hasConcept C50522688 @default.
- W2109443444 hasConcept C57869625 @default.
- W2109443444 hasConcept C62520636 @default.
- W2109443444 hasConcept C81184566 @default.
- W2109443444 hasConceptScore W2109443444C106487976 @default.
- W2109443444 hasConceptScore W2109443444C111472728 @default.
- W2109443444 hasConceptScore W2109443444C11413529 @default.
- W2109443444 hasConceptScore W2109443444C117586675 @default.
- W2109443444 hasConceptScore W2109443444C121332964 @default.