Matches in SemOpenAlex for { <https://semopenalex.org/work/W2109478898> ?p ?o ?g. }
- W2109478898 endingPage "806" @default.
- W2109478898 startingPage "765" @default.
- W2109478898 abstract "Abstract The Korteweg–de Vries–Zakharov–Kuznetsov (KdV-ZK) equation describes the nonlinear behaviour of long-wavelength weakly nonlinear ion-acoustic waves propagating obliquely to an external uniform (space independent) static (time independent) magnetic field in a plasma consisting of warm adiabatic ions and a superposition of two distinct population of electrons, one due to Cairns et al. (1995 Geophys. Res. Lett. 22 , 2709), which generates the fast energetic electrons, and the other the well-known Maxwell–Boltzman distributed electrons. It is found that the compressive or rarefactive nature of the ion-acoustic solitary wave solution of the KdV-ZK equation does not depend on the ion temperature if σ c <0 or σ c >1, where σ c is a function of β 1 , n sc and σ sc . This β 1 is the non-thermal parameter associated with the non-thermal velocity distribution function of electrons (Cairns et al.), n sc is the ratio of the unperturbed number density of the isothermal electrons to that of the non-thermal electrons and σ sc is the ratio of the average temperature of the non-thermal electrons to that of the isothermal electrons. The KdV-ZK equation describes compressive or rarefactive ion-acoustic solitary wave according to whether σ c <0 or σ c >1. When 0 ≤ σ c ≤ 1, the KdV-ZK equation describes compressive or rarefactive ion-acoustic solitary wave according to whether σ>σ c or σ<σ c , where σ is the ratio of the average temperature of ions to the effective temperature of electrons. If σ takes the value σ c with 0 ≤ σ c ≤ 1, the coefficient of the nonlinear term of the KdV-ZK equation vanishes and for this case the nonlinear evolution equation of the ion-acoustic wave is a modified KdV-ZK (MKdV-ZK) equation. It is found that the four-dimensional parameter space, originated from the physically admissible values of the four-parameters β 1 , σ, σ sc and n sc of the present extended plasma system, can be decomposed into five mutually disjoint subsets with respect to the critical values of the different parameters, and the nonlinear behaviour of the same ion acoustic wave in those subsets can be described by different modified KdV-ZK equations. A general method of perturbation of the dependent variables has been developed to obtain the different evolution equations. The applicability of the different evolution equations and their solitary wave solutions (along with the conditions for their existence) have been investigated analytically and graphically." @default.
- W2109478898 created "2016-06-24" @default.
- W2109478898 creator A5035857942 @default.
- W2109478898 creator A5046438720 @default.
- W2109478898 creator A5089923787 @default.
- W2109478898 date "2008-12-01" @default.
- W2109478898 modified "2023-09-23" @default.
- W2109478898 title "Ion-acoustic solitary waves in a multi-species magnetized plasma consisting of non-thermal and isothermal electrons" @default.
- W2109478898 cites W1649155956 @default.
- W2109478898 cites W1971169328 @default.
- W2109478898 cites W1973494951 @default.
- W2109478898 cites W1975745273 @default.
- W2109478898 cites W1976490878 @default.
- W2109478898 cites W1982782206 @default.
- W2109478898 cites W1984397264 @default.
- W2109478898 cites W1988024052 @default.
- W2109478898 cites W1989674623 @default.
- W2109478898 cites W1990826718 @default.
- W2109478898 cites W1999577507 @default.
- W2109478898 cites W2001156410 @default.
- W2109478898 cites W2002054071 @default.
- W2109478898 cites W2002797547 @default.
- W2109478898 cites W2008869546 @default.
- W2109478898 cites W2009515948 @default.
- W2109478898 cites W2012666136 @default.
- W2109478898 cites W2018898687 @default.
- W2109478898 cites W2020761738 @default.
- W2109478898 cites W2022123605 @default.
- W2109478898 cites W2022180161 @default.
- W2109478898 cites W2024127151 @default.
- W2109478898 cites W2035156306 @default.
- W2109478898 cites W2038156621 @default.
- W2109478898 cites W2064910897 @default.
- W2109478898 cites W2066885539 @default.
- W2109478898 cites W2072077604 @default.
- W2109478898 cites W2072897482 @default.
- W2109478898 cites W2073774189 @default.
- W2109478898 cites W2073836498 @default.
- W2109478898 cites W2076214146 @default.
- W2109478898 cites W2076280464 @default.
- W2109478898 cites W2076417730 @default.
- W2109478898 cites W2084494013 @default.
- W2109478898 cites W2086947082 @default.
- W2109478898 cites W2087204845 @default.
- W2109478898 cites W2089446317 @default.
- W2109478898 cites W2090079556 @default.
- W2109478898 cites W2091407343 @default.
- W2109478898 cites W2092937257 @default.
- W2109478898 cites W2101082188 @default.
- W2109478898 cites W2105358155 @default.
- W2109478898 cites W2111988178 @default.
- W2109478898 cites W2119149682 @default.
- W2109478898 cites W2131559671 @default.
- W2109478898 cites W2141024558 @default.
- W2109478898 cites W2143418220 @default.
- W2109478898 cites W2144234299 @default.
- W2109478898 cites W2157663679 @default.
- W2109478898 cites W2158271593 @default.
- W2109478898 cites W2166943168 @default.
- W2109478898 cites W2167865095 @default.
- W2109478898 cites W2312504877 @default.
- W2109478898 cites W2316502357 @default.
- W2109478898 cites W3023110653 @default.
- W2109478898 cites W2057900315 @default.
- W2109478898 doi "https://doi.org/10.1017/s0022377808007241" @default.
- W2109478898 hasPublicationYear "2008" @default.
- W2109478898 type Work @default.
- W2109478898 sameAs 2109478898 @default.
- W2109478898 citedByCount "18" @default.
- W2109478898 countsByYear W21094788982012 @default.
- W2109478898 countsByYear W21094788982017 @default.
- W2109478898 countsByYear W21094788982019 @default.
- W2109478898 countsByYear W21094788982020 @default.
- W2109478898 countsByYear W21094788982022 @default.
- W2109478898 countsByYear W21094788982023 @default.
- W2109478898 crossrefType "journal-article" @default.
- W2109478898 hasAuthorship W2109478898A5035857942 @default.
- W2109478898 hasAuthorship W2109478898A5046438720 @default.
- W2109478898 hasAuthorship W2109478898A5089923787 @default.
- W2109478898 hasConcept C109663097 @default.
- W2109478898 hasConcept C121332964 @default.
- W2109478898 hasConcept C133347239 @default.
- W2109478898 hasConcept C145148216 @default.
- W2109478898 hasConcept C146630112 @default.
- W2109478898 hasConcept C147120987 @default.
- W2109478898 hasConcept C158622935 @default.
- W2109478898 hasConcept C184779094 @default.
- W2109478898 hasConcept C186603090 @default.
- W2109478898 hasConcept C204723758 @default.
- W2109478898 hasConcept C22175881 @default.
- W2109478898 hasConcept C62520636 @default.
- W2109478898 hasConcept C82706917 @default.
- W2109478898 hasConcept C97355855 @default.
- W2109478898 hasConceptScore W2109478898C109663097 @default.
- W2109478898 hasConceptScore W2109478898C121332964 @default.
- W2109478898 hasConceptScore W2109478898C133347239 @default.
- W2109478898 hasConceptScore W2109478898C145148216 @default.
- W2109478898 hasConceptScore W2109478898C146630112 @default.