Matches in SemOpenAlex for { <https://semopenalex.org/work/W2109481912> ?p ?o ?g. }
- W2109481912 abstract "The ability to precisely manipulate the genome in a targeted manner is fundamental to driving both basic science research and development of medical therapeutics. Until recently, this has been primarily achieved through coupling of a nuclease domain with customizable protein modules that recognize DNA in a sequence-specific manner such as zinc finger or transcription activator-like effector domains. Though these approaches have allowed unprecedented precision in manipulating the genome, in practice they have been limited by the reproducibility, predictability, and specificity of targeted cleavage, all of which are partially attributable to the nature of protein-mediated DNA sequence recognition. It has been recently shown that the microbial CRISPR-Cas system can be adapted for eukaryotic genome editing. Cas9, an RNA-guided DNA endonuclease, is directed by a 20-nt guide sequence via Watson-Crick base-pairing to its genomic target. Cas9 subsequently induces a double-stranded DNA break that results in targeted gene disruption through non-homologous end-joining repair or gene replacement via homologous recombination. Finally, the RNA guide and protein nuclease dual component system allows simultaneous delivery of multiple guide RNAs (sgRNA) to achieve multiplex genome editing with ease and efficiency. The potential effects of off-target genomic modification represent a significant caveat to genome editing approaches in both research and therapeutic applications. Prior work from our lab and others has shown that Cas9 can tolerate some degree of mismatch with the guide RNA to target DNA base pairing. To increase substrate specificity, we devised a technique that uses a Cas9 nickase mutant with appropriately paired guide RNAs to efficiently inducing double-stranded breaks via simultaneous nicks on both strands of target DNA. As single-stranded nicks are repaired with high fidelity, targeted genome modification only occurs when the two opposite-strand nicks are closely spaced. This double nickase approach allows for marked reduction of off-target genome modification while maintaining robust on-target cleavage efficiency, making a significant step towards addressing one of the primary concerns regarding the use of genome editing technologies. The ability to multiplex genome engineering by simply co-delivering multiple sgRNAs is a versatile property unique to the CRISPR-Cas system. While co-transfection of multiple guides is readily feasible in tissue culture, many in vivo and therapeutic applications would benefit from a compact, single vector system that would allow robust and reproducible multiplex editing. To achieve this, we first generated and functionally validated alternate sgRNA architectures to characterize the structure-function relationship of the Cas9 protein with the sgRNA in DNA recognition and cleavage. We then applied this knowledge towards the development and optimization of a tandem synthetic guide RNA (tsgRNA) scaffold that allows for a single promoter to drive expression of a single RNA transcript encoding two sgRNAs, which are subsequently processed into individual active sgRNAs." @default.
- W2109481912 created "2016-06-24" @default.
- W2109481912 creator A5035060014 @default.
- W2109481912 date "2014-07-07" @default.
- W2109481912 modified "2023-09-27" @default.
- W2109481912 title "Characterization and Optimization of the CRISPR/Cas System for Applications in Genome Engineering" @default.
- W2109481912 cites W1520518044 @default.
- W2109481912 cites W1531234455 @default.
- W2109481912 cites W1647075334 @default.
- W2109481912 cites W1845461494 @default.
- W2109481912 cites W1933893097 @default.
- W2109481912 cites W1967999689 @default.
- W2109481912 cites W1969733979 @default.
- W2109481912 cites W1973260880 @default.
- W2109481912 cites W1973878786 @default.
- W2109481912 cites W1977709885 @default.
- W2109481912 cites W1978094899 @default.
- W2109481912 cites W1978129709 @default.
- W2109481912 cites W1982846895 @default.
- W2109481912 cites W1982969769 @default.
- W2109481912 cites W1995793532 @default.
- W2109481912 cites W2002767268 @default.
- W2109481912 cites W2003171404 @default.
- W2109481912 cites W2008553597 @default.
- W2109481912 cites W2009697993 @default.
- W2109481912 cites W2017968214 @default.
- W2109481912 cites W2019670881 @default.
- W2109481912 cites W2036176224 @default.
- W2109481912 cites W2044741494 @default.
- W2109481912 cites W2045435533 @default.
- W2109481912 cites W2047032063 @default.
- W2109481912 cites W2047178946 @default.
- W2109481912 cites W2051395442 @default.
- W2109481912 cites W2053632015 @default.
- W2109481912 cites W2058755882 @default.
- W2109481912 cites W2061650108 @default.
- W2109481912 cites W2063148079 @default.
- W2109481912 cites W2064815984 @default.
- W2109481912 cites W2072051684 @default.
- W2109481912 cites W2073873559 @default.
- W2109481912 cites W2075529916 @default.
- W2109481912 cites W2077659966 @default.
- W2109481912 cites W2084481314 @default.
- W2109481912 cites W2086369200 @default.
- W2109481912 cites W2092620749 @default.
- W2109481912 cites W2101749257 @default.
- W2109481912 cites W2107235611 @default.
- W2109481912 cites W2108038398 @default.
- W2109481912 cites W2112295554 @default.
- W2109481912 cites W2117991391 @default.
- W2109481912 cites W2118746294 @default.
- W2109481912 cites W2120503144 @default.
- W2109481912 cites W2127634492 @default.
- W2109481912 cites W2129237258 @default.
- W2109481912 cites W2132291850 @default.
- W2109481912 cites W2140494588 @default.
- W2109481912 cites W2140886363 @default.
- W2109481912 cites W2148050025 @default.
- W2109481912 cites W2149402050 @default.
- W2109481912 cites W2149751339 @default.
- W2109481912 cites W2153344788 @default.
- W2109481912 cites W2157078151 @default.
- W2109481912 cites W2160051211 @default.
- W2109481912 cites W2163018106 @default.
- W2109481912 cites W2167380395 @default.
- W2109481912 cites W2168487117 @default.
- W2109481912 cites W2170039745 @default.
- W2109481912 cites W2277208675 @default.
- W2109481912 cites W2327251992 @default.
- W2109481912 hasPublicationYear "2014" @default.
- W2109481912 type Work @default.
- W2109481912 sameAs 2109481912 @default.
- W2109481912 citedByCount "0" @default.
- W2109481912 crossrefType "dissertation" @default.
- W2109481912 hasAuthorship W2109481912A5035060014 @default.
- W2109481912 hasConcept C102744134 @default.
- W2109481912 hasConcept C104317684 @default.
- W2109481912 hasConcept C132455925 @default.
- W2109481912 hasConcept C141231307 @default.
- W2109481912 hasConcept C144501496 @default.
- W2109481912 hasConcept C145290725 @default.
- W2109481912 hasConcept C2777271071 @default.
- W2109481912 hasConcept C31909778 @default.
- W2109481912 hasConcept C54355233 @default.
- W2109481912 hasConcept C552990157 @default.
- W2109481912 hasConcept C70721500 @default.
- W2109481912 hasConcept C86803240 @default.
- W2109481912 hasConcept C97702854 @default.
- W2109481912 hasConcept C98108389 @default.
- W2109481912 hasConceptScore W2109481912C102744134 @default.
- W2109481912 hasConceptScore W2109481912C104317684 @default.
- W2109481912 hasConceptScore W2109481912C132455925 @default.
- W2109481912 hasConceptScore W2109481912C141231307 @default.
- W2109481912 hasConceptScore W2109481912C144501496 @default.
- W2109481912 hasConceptScore W2109481912C145290725 @default.
- W2109481912 hasConceptScore W2109481912C2777271071 @default.
- W2109481912 hasConceptScore W2109481912C31909778 @default.
- W2109481912 hasConceptScore W2109481912C54355233 @default.
- W2109481912 hasConceptScore W2109481912C552990157 @default.
- W2109481912 hasConceptScore W2109481912C70721500 @default.