Matches in SemOpenAlex for { <https://semopenalex.org/work/W2109511973> ?p ?o ?g. }
- W2109511973 endingPage "A103" @default.
- W2109511973 startingPage "A103" @default.
- W2109511973 abstract "Aims. We present interior structure models of the recently discovered exoplanets CoRoT-7b and Kepler-10b addressing their bulk compositions, present thermal states, and internal dynamics. We investigate how mantle convection patterns are influenced by the depth-dependence of thermodynamic parameters (e.g., thermal expansivity and conductivity) caused by the extended pressure and temperature ranges within rocky super-Earths. Methods. To model the interior of rocky exoplanets, we construct a four-layer structural model solving the mass and energy balance equations in conjunction with a generalized Rydberg equation of state providing the radial density distribution within each layer. The present thermal state is calculated according to a modified mixing-length approach for highly viscous fluids. Furthermore, the obtained internal structure is used to carry out two-dimensional convection simulations to visualize the mantle convection pattern within massive exoplanets such as CoRoT-7b and Kepler-10b. Results. Both CoRoT-7b and Kepler-10b most likely have large iron cores and a bulk composition similar to that of Mercury. For a planetary radius of Rp = (1.58 ± 0.10) R⊕, a revised total mass of Mp = (7.42 ± 1.21) M⊕, and the existence of a third planet in the CoRoT-7 planetary system, calculations suggest that an iron core of 64 wt-% and a silicate mantle of 36 wt-% is produced owing to the relatively high average compressed density of ρavg = (10.4±1.8) g cm −3 . Kepler-10b’s planetary radius and total mass yield an iron core of 59.5 wt-%, which complements the silicate mantle of 40.5 wt-%. An enhanced radiogenic heating rate owing to CoRoT-7b’s young age (1.2−2.3 Gyr) raises the radial distribution of temperature by only a few hundred Kelvin, but reduces the viscosity by an order of magnitude. The planform of mantle convection is found to be strongly modified for depth-dependent material properties, with hot plumes rising across the whole mantle and cold slabs, which stagnate in the mid-mantle because of the loss of buoyancy. Conclusions. We use a new model approach to determine the detailed interior structures and present thermal states of CoRoT-7b and Kepler-10b. Both planets are found to be enriched in iron. The results imply that modest radiogenic heating does not play a significant role in determining the internal structure of rocky exoplanets. The depth-dependence of thermodynamic properties, however, strongly influences the mantle convection patterns within exoplanets such as CoRoT-7b and Kepler-10b. This may have a significant effect on the thermal evolution and magnetic field generation of close-in super-Earths." @default.
- W2109511973 created "2016-06-24" @default.
- W2109511973 creator A5005331964 @default.
- W2109511973 creator A5015524075 @default.
- W2109511973 creator A5021448761 @default.
- W2109511973 creator A5051817093 @default.
- W2109511973 creator A5074167934 @default.
- W2109511973 date "2012-05-01" @default.
- W2109511973 modified "2023-10-16" @default.
- W2109511973 title "Rocky super-Earth interiors" @default.
- W2109511973 cites W1560011158 @default.
- W2109511973 cites W1685102119 @default.
- W2109511973 cites W1969599221 @default.
- W2109511973 cites W1970045349 @default.
- W2109511973 cites W1970101802 @default.
- W2109511973 cites W1977154222 @default.
- W2109511973 cites W1978234494 @default.
- W2109511973 cites W1978750479 @default.
- W2109511973 cites W1979197755 @default.
- W2109511973 cites W1979399431 @default.
- W2109511973 cites W1982122314 @default.
- W2109511973 cites W1994717458 @default.
- W2109511973 cites W1996096868 @default.
- W2109511973 cites W2000684404 @default.
- W2109511973 cites W2000965184 @default.
- W2109511973 cites W2003601626 @default.
- W2109511973 cites W2004119552 @default.
- W2109511973 cites W2006854098 @default.
- W2109511973 cites W2007740399 @default.
- W2109511973 cites W2011733168 @default.
- W2109511973 cites W2020637107 @default.
- W2109511973 cites W2021065582 @default.
- W2109511973 cites W2022367202 @default.
- W2109511973 cites W2024545888 @default.
- W2109511973 cites W2031887605 @default.
- W2109511973 cites W2032707629 @default.
- W2109511973 cites W2044103907 @default.
- W2109511973 cites W2049747765 @default.
- W2109511973 cites W2050897884 @default.
- W2109511973 cites W2056418213 @default.
- W2109511973 cites W2061053358 @default.
- W2109511973 cites W2062221814 @default.
- W2109511973 cites W2068444442 @default.
- W2109511973 cites W2074929585 @default.
- W2109511973 cites W2083935149 @default.
- W2109511973 cites W2084768845 @default.
- W2109511973 cites W2086525482 @default.
- W2109511973 cites W2088458301 @default.
- W2109511973 cites W2088959060 @default.
- W2109511973 cites W2096200890 @default.
- W2109511973 cites W2097914838 @default.
- W2109511973 cites W2099551296 @default.
- W2109511973 cites W2100363405 @default.
- W2109511973 cites W2109022614 @default.
- W2109511973 cites W2111726120 @default.
- W2109511973 cites W2115532364 @default.
- W2109511973 cites W2117229350 @default.
- W2109511973 cites W2127359496 @default.
- W2109511973 cites W2127528886 @default.
- W2109511973 cites W2132117032 @default.
- W2109511973 cites W2132519231 @default.
- W2109511973 cites W2133045461 @default.
- W2109511973 cites W2133797927 @default.
- W2109511973 cites W2156248413 @default.
- W2109511973 cites W2164361520 @default.
- W2109511973 cites W2165298785 @default.
- W2109511973 cites W2989338800 @default.
- W2109511973 cites W3098123707 @default.
- W2109511973 cites W3102084080 @default.
- W2109511973 cites W3102762255 @default.
- W2109511973 cites W3105807652 @default.
- W2109511973 cites W3105820443 @default.
- W2109511973 cites W4234440840 @default.
- W2109511973 cites W4252831928 @default.
- W2109511973 cites W4299807109 @default.
- W2109511973 cites W47828399 @default.
- W2109511973 cites W935997811 @default.
- W2109511973 doi "https://doi.org/10.1051/0004-6361/201118441" @default.
- W2109511973 hasPublicationYear "2012" @default.
- W2109511973 type Work @default.
- W2109511973 sameAs 2109511973 @default.
- W2109511973 citedByCount "66" @default.
- W2109511973 countsByYear W21095119732013 @default.
- W2109511973 countsByYear W21095119732014 @default.
- W2109511973 countsByYear W21095119732015 @default.
- W2109511973 countsByYear W21095119732016 @default.
- W2109511973 countsByYear W21095119732017 @default.
- W2109511973 countsByYear W21095119732018 @default.
- W2109511973 countsByYear W21095119732019 @default.
- W2109511973 countsByYear W21095119732020 @default.
- W2109511973 countsByYear W21095119732021 @default.
- W2109511973 countsByYear W21095119732022 @default.
- W2109511973 countsByYear W21095119732023 @default.
- W2109511973 crossrefType "journal-article" @default.
- W2109511973 hasAuthorship W2109511973A5005331964 @default.
- W2109511973 hasAuthorship W2109511973A5015524075 @default.
- W2109511973 hasAuthorship W2109511973A5021448761 @default.
- W2109511973 hasAuthorship W2109511973A5051817093 @default.