Matches in SemOpenAlex for { <https://semopenalex.org/work/W2109517492> ?p ?o ?g. }
- W2109517492 endingPage "1" @default.
- W2109517492 startingPage "1" @default.
- W2109517492 abstract "This paper presents a method that enables automated morphology analysis of partially overlapping nanoparticles in electron micrographs. In the undertaking of morphology analysis, three tasks appear necessary: separate individual particles from an agglomerate of overlapping nano-objects; infer the particle's missing contours; and ultimately, classify the particles by shape based on their complete contours. Our specific method adopts a two-stage approach: the first stage executes the task of particle separation, and the second stage conducts simultaneously the tasks of contour inference and shape classification. For the first stage, a modified ultimate erosion process is developed for decomposing a mixture of particles into markers, and then, an edge-to-marker association method is proposed to identify the set of evidences that eventually delineate individual objects. We also provided theoretical justification regarding the separation capability of the first stage. In the second stage, the set of evidences become inputs to a Gaussian mixture model on B-splines, the solution of which leads to the joint learning of the missing contour and the particle shape. Using twelve real electron micrographs of overlapping nanoparticles, we compare the proposed method with seven state-of-the-art methods. The results show the superiority of the proposed method in terms of particle recognition rate." @default.
- W2109517492 created "2016-06-24" @default.
- W2109517492 creator A5009642414 @default.
- W2109517492 creator A5035632114 @default.
- W2109517492 creator A5037061933 @default.
- W2109517492 creator A5066523990 @default.
- W2109517492 date "2013-03-01" @default.
- W2109517492 modified "2023-10-16" @default.
- W2109517492 title "Segmentation, Inference and Classification of Partially Overlapping Nanoparticles" @default.
- W2109517492 cites W140797304 @default.
- W2109517492 cites W1515047410 @default.
- W2109517492 cites W1571966798 @default.
- W2109517492 cites W1967449958 @default.
- W2109517492 cites W1967639437 @default.
- W2109517492 cites W1979884986 @default.
- W2109517492 cites W1981631581 @default.
- W2109517492 cites W1993343079 @default.
- W2109517492 cites W1994323360 @default.
- W2109517492 cites W1999478155 @default.
- W2109517492 cites W2004909834 @default.
- W2109517492 cites W2005907009 @default.
- W2109517492 cites W2009231756 @default.
- W2109517492 cites W2009542133 @default.
- W2109517492 cites W2013495083 @default.
- W2109517492 cites W2019324907 @default.
- W2109517492 cites W2040425930 @default.
- W2109517492 cites W2044794349 @default.
- W2109517492 cites W2045249683 @default.
- W2109517492 cites W2048872159 @default.
- W2109517492 cites W2054821087 @default.
- W2109517492 cites W2056116011 @default.
- W2109517492 cites W2074853891 @default.
- W2109517492 cites W2082907229 @default.
- W2109517492 cites W2092820391 @default.
- W2109517492 cites W2093262329 @default.
- W2109517492 cites W2097007083 @default.
- W2109517492 cites W2104095591 @default.
- W2109517492 cites W2116040950 @default.
- W2109517492 cites W2119336946 @default.
- W2109517492 cites W2120549843 @default.
- W2109517492 cites W2121947440 @default.
- W2109517492 cites W2133059825 @default.
- W2109517492 cites W2133147610 @default.
- W2109517492 cites W2140778636 @default.
- W2109517492 cites W2145023731 @default.
- W2109517492 cites W2147427282 @default.
- W2109517492 cites W2152744436 @default.
- W2109517492 cites W2153504150 @default.
- W2109517492 cites W2165734775 @default.
- W2109517492 cites W2167435976 @default.
- W2109517492 cites W2170802226 @default.
- W2109517492 cites W4298303644 @default.
- W2109517492 cites W4300797882 @default.
- W2109517492 cites W96039513 @default.
- W2109517492 cites W1538995327 @default.
- W2109517492 doi "https://doi.org/10.1109/tpami.2012.163" @default.
- W2109517492 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22848127" @default.
- W2109517492 hasPublicationYear "2013" @default.
- W2109517492 type Work @default.
- W2109517492 sameAs 2109517492 @default.
- W2109517492 citedByCount "74" @default.
- W2109517492 countsByYear W21095174922013 @default.
- W2109517492 countsByYear W21095174922014 @default.
- W2109517492 countsByYear W21095174922015 @default.
- W2109517492 countsByYear W21095174922016 @default.
- W2109517492 countsByYear W21095174922017 @default.
- W2109517492 countsByYear W21095174922018 @default.
- W2109517492 countsByYear W21095174922019 @default.
- W2109517492 countsByYear W21095174922020 @default.
- W2109517492 countsByYear W21095174922021 @default.
- W2109517492 countsByYear W21095174922022 @default.
- W2109517492 countsByYear W21095174922023 @default.
- W2109517492 crossrefType "journal-article" @default.
- W2109517492 hasAuthorship W2109517492A5009642414 @default.
- W2109517492 hasAuthorship W2109517492A5035632114 @default.
- W2109517492 hasAuthorship W2109517492A5037061933 @default.
- W2109517492 hasAuthorship W2109517492A5066523990 @default.
- W2109517492 hasConcept C111368507 @default.
- W2109517492 hasConcept C111919701 @default.
- W2109517492 hasConcept C115961682 @default.
- W2109517492 hasConcept C124504099 @default.
- W2109517492 hasConcept C127313418 @default.
- W2109517492 hasConcept C146357865 @default.
- W2109517492 hasConcept C151730666 @default.
- W2109517492 hasConcept C153180895 @default.
- W2109517492 hasConcept C154945302 @default.
- W2109517492 hasConcept C162307627 @default.
- W2109517492 hasConcept C177264268 @default.
- W2109517492 hasConcept C193536780 @default.
- W2109517492 hasConcept C199360897 @default.
- W2109517492 hasConcept C2776214188 @default.
- W2109517492 hasConcept C2778517922 @default.
- W2109517492 hasConcept C41008148 @default.
- W2109517492 hasConcept C61224824 @default.
- W2109517492 hasConcept C86803240 @default.
- W2109517492 hasConcept C89600930 @default.
- W2109517492 hasConcept C9417928 @default.
- W2109517492 hasConcept C98045186 @default.