Matches in SemOpenAlex for { <https://semopenalex.org/work/W2109664324> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2109664324 endingPage "425" @default.
- W2109664324 startingPage "411" @default.
- W2109664324 abstract "Human face recognition based on geometrical structure has been an area of interest among researchers for the past few decades especially in pattern recognition. 3D Face recognition systems are of interest in this context. The main advantage of 3D Face recognition is the availability of geometrical information of the face structure which is more or less unique for a subject. This paper focuses on the problems of person identification using 3D Face data. Use of unregistered 3D Face data for feature extraction significantly increases the operational speed of the system with huge database enrollment. In this work, unregistered Face data, i.e. both texture and depth is fed to a classifier in spectral representations of the same data. 2-D Discrete Contourlet Transform and 2-D Discrete Fourier Transform is used here for the spectral representation which forms the feature matrix. Fusion of texture and depth statistical information of face is proposed in this paper since the individual schemes are of lower performance. Application of statistical method seems to degrade the performance of the system when applied to texture data and was effective in the case of depth data. Fusion of the matching scores proves that the recognition accuracy can be improved significantly by fusion of scores of multiple representations. FRAV3D database is used for testing the algorithm." @default.
- W2109664324 created "2016-06-24" @default.
- W2109664324 creator A5038242332 @default.
- W2109664324 creator A5041200661 @default.
- W2109664324 date "2015-08-29" @default.
- W2109664324 modified "2023-09-25" @default.
- W2109664324 title "Contourlet and Fourier Transform Features Based 3D Face Recognition System" @default.
- W2109664324 cites W1578309724 @default.
- W2109664324 cites W1709036216 @default.
- W2109664324 cites W189889428 @default.
- W2109664324 cites W1988730736 @default.
- W2109664324 cites W2006952256 @default.
- W2109664324 cites W2041933540 @default.
- W2109664324 cites W2049981393 @default.
- W2109664324 cites W2062399388 @default.
- W2109664324 cites W2103504761 @default.
- W2109664324 cites W2109175250 @default.
- W2109664324 cites W2117853853 @default.
- W2109664324 cites W2131965686 @default.
- W2109664324 cites W2138451337 @default.
- W2109664324 doi "https://doi.org/10.1007/978-3-319-23036-8_36" @default.
- W2109664324 hasPublicationYear "2015" @default.
- W2109664324 type Work @default.
- W2109664324 sameAs 2109664324 @default.
- W2109664324 citedByCount "0" @default.
- W2109664324 crossrefType "book-chapter" @default.
- W2109664324 hasAuthorship W2109664324A5038242332 @default.
- W2109664324 hasAuthorship W2109664324A5041200661 @default.
- W2109664324 hasConcept C116409475 @default.
- W2109664324 hasConcept C144024400 @default.
- W2109664324 hasConcept C153180895 @default.
- W2109664324 hasConcept C154945302 @default.
- W2109664324 hasConcept C196216189 @default.
- W2109664324 hasConcept C20479862 @default.
- W2109664324 hasConcept C2779304628 @default.
- W2109664324 hasConcept C31510193 @default.
- W2109664324 hasConcept C31972630 @default.
- W2109664324 hasConcept C36289849 @default.
- W2109664324 hasConcept C41008148 @default.
- W2109664324 hasConcept C47432892 @default.
- W2109664324 hasConcept C52622490 @default.
- W2109664324 hasConcept C95623464 @default.
- W2109664324 hasConceptScore W2109664324C116409475 @default.
- W2109664324 hasConceptScore W2109664324C144024400 @default.
- W2109664324 hasConceptScore W2109664324C153180895 @default.
- W2109664324 hasConceptScore W2109664324C154945302 @default.
- W2109664324 hasConceptScore W2109664324C196216189 @default.
- W2109664324 hasConceptScore W2109664324C20479862 @default.
- W2109664324 hasConceptScore W2109664324C2779304628 @default.
- W2109664324 hasConceptScore W2109664324C31510193 @default.
- W2109664324 hasConceptScore W2109664324C31972630 @default.
- W2109664324 hasConceptScore W2109664324C36289849 @default.
- W2109664324 hasConceptScore W2109664324C41008148 @default.
- W2109664324 hasConceptScore W2109664324C47432892 @default.
- W2109664324 hasConceptScore W2109664324C52622490 @default.
- W2109664324 hasConceptScore W2109664324C95623464 @default.
- W2109664324 hasLocation W21096643241 @default.
- W2109664324 hasOpenAccess W2109664324 @default.
- W2109664324 hasPrimaryLocation W21096643241 @default.
- W2109664324 hasRelatedWork W1775397219 @default.
- W2109664324 hasRelatedWork W2001391903 @default.
- W2109664324 hasRelatedWork W2017517155 @default.
- W2109664324 hasRelatedWork W2031420897 @default.
- W2109664324 hasRelatedWork W2034295284 @default.
- W2109664324 hasRelatedWork W2147083459 @default.
- W2109664324 hasRelatedWork W2353697322 @default.
- W2109664324 hasRelatedWork W2624266381 @default.
- W2109664324 hasRelatedWork W2995914718 @default.
- W2109664324 hasRelatedWork W4312603404 @default.
- W2109664324 isParatext "false" @default.
- W2109664324 isRetracted "false" @default.
- W2109664324 magId "2109664324" @default.
- W2109664324 workType "book-chapter" @default.