Matches in SemOpenAlex for { <https://semopenalex.org/work/W2109758583> ?p ?o ?g. }
- W2109758583 endingPage "409" @default.
- W2109758583 startingPage "400" @default.
- W2109758583 abstract "Multiphase surveys are often conducted in forest inventories, with the goal of estimating forested area and tree characteristics over large regions. This article describes how design-based estimation of such quantities, based on information gathered during ground visits of sampled plots, can be made more precise by incorporating auxiliary information available from remote sensing. The relationship between the ground visit measurements and the remote sensing variables is modeled using generalized additive models. Nonparametric estimators for these models are discussed and applied to forest data collected in the mountains of northern Utah. Model-assisted estimators that use the nonparametric regression fits are proposed for these data. The design context of this study is two-phase systematic sampling from a spatial continuum, under which properties of model-assisted estimators are derived. Difficulties with the standard variance estimation approach, which assumes simple random sampling in each phase, are described. An alternative assessment of estimator performance based on a synthetic population is implemented and shows that using the model predictions in a model-assisted survey estimation procedure results in substantial efficiency improvements over current estimation approaches." @default.
- W2109758583 created "2016-06-24" @default.
- W2109758583 creator A5005888976 @default.
- W2109758583 creator A5065418517 @default.
- W2109758583 creator A5078128736 @default.
- W2109758583 creator A5080130424 @default.
- W2109758583 date "2007-06-01" @default.
- W2109758583 modified "2023-09-30" @default.
- W2109758583 title "Model-Assisted Estimation of Forest Resources With Generalized Additive Models" @default.
- W2109758583 cites W1550602125 @default.
- W2109758583 cites W1588320409 @default.
- W2109758583 cites W171491047 @default.
- W2109758583 cites W1930746841 @default.
- W2109758583 cites W1975695397 @default.
- W2109758583 cites W1982848067 @default.
- W2109758583 cites W1999006424 @default.
- W2109758583 cites W1999659160 @default.
- W2109758583 cites W2004349386 @default.
- W2109758583 cites W2019293164 @default.
- W2109758583 cites W2029685080 @default.
- W2109758583 cites W2035664871 @default.
- W2109758583 cites W2059120516 @default.
- W2109758583 cites W2059345648 @default.
- W2109758583 cites W2066583279 @default.
- W2109758583 cites W2077563060 @default.
- W2109758583 cites W209267424 @default.
- W2109758583 cites W2097672871 @default.
- W2109758583 cites W2100114170 @default.
- W2109758583 cites W2101059365 @default.
- W2109758583 cites W2117161260 @default.
- W2109758583 cites W21438286 @default.
- W2109758583 cites W2169708322 @default.
- W2109758583 cites W2170060315 @default.
- W2109758583 cites W2186397061 @default.
- W2109758583 cites W2226678130 @default.
- W2109758583 cites W2312804279 @default.
- W2109758583 cites W2334613968 @default.
- W2109758583 cites W246669489 @default.
- W2109758583 cites W2797583072 @default.
- W2109758583 cites W2808923782 @default.
- W2109758583 cites W2967518369 @default.
- W2109758583 cites W3014310718 @default.
- W2109758583 cites W3024246952 @default.
- W2109758583 cites W33822569 @default.
- W2109758583 cites W52437273 @default.
- W2109758583 cites W83761634 @default.
- W2109758583 doi "https://doi.org/10.1198/016214506000001491" @default.
- W2109758583 hasPublicationYear "2007" @default.
- W2109758583 type Work @default.
- W2109758583 sameAs 2109758583 @default.
- W2109758583 citedByCount "94" @default.
- W2109758583 countsByYear W21097585832012 @default.
- W2109758583 countsByYear W21097585832013 @default.
- W2109758583 countsByYear W21097585832014 @default.
- W2109758583 countsByYear W21097585832015 @default.
- W2109758583 countsByYear W21097585832016 @default.
- W2109758583 countsByYear W21097585832017 @default.
- W2109758583 countsByYear W21097585832018 @default.
- W2109758583 countsByYear W21097585832019 @default.
- W2109758583 countsByYear W21097585832020 @default.
- W2109758583 countsByYear W21097585832021 @default.
- W2109758583 countsByYear W21097585832022 @default.
- W2109758583 countsByYear W21097585832023 @default.
- W2109758583 crossrefType "journal-article" @default.
- W2109758583 hasAuthorship W2109758583A5005888976 @default.
- W2109758583 hasAuthorship W2109758583A5065418517 @default.
- W2109758583 hasAuthorship W2109758583A5078128736 @default.
- W2109758583 hasAuthorship W2109758583A5080130424 @default.
- W2109758583 hasConcept C102366305 @default.
- W2109758583 hasConcept C105795698 @default.
- W2109758583 hasConcept C106131492 @default.
- W2109758583 hasConcept C119857082 @default.
- W2109758583 hasConcept C121955636 @default.
- W2109758583 hasConcept C124101348 @default.
- W2109758583 hasConcept C127413603 @default.
- W2109758583 hasConcept C129963666 @default.
- W2109758583 hasConcept C140779682 @default.
- W2109758583 hasConcept C144024400 @default.
- W2109758583 hasConcept C144133560 @default.
- W2109758583 hasConcept C149782125 @default.
- W2109758583 hasConcept C149923435 @default.
- W2109758583 hasConcept C166957645 @default.
- W2109758583 hasConcept C169258074 @default.
- W2109758583 hasConcept C185429906 @default.
- W2109758583 hasConcept C196083921 @default.
- W2109758583 hasConcept C201995342 @default.
- W2109758583 hasConcept C20353970 @default.
- W2109758583 hasConcept C205649164 @default.
- W2109758583 hasConcept C2779343474 @default.
- W2109758583 hasConcept C2908647359 @default.
- W2109758583 hasConcept C31972630 @default.
- W2109758583 hasConcept C33923547 @default.
- W2109758583 hasConcept C41008148 @default.
- W2109758583 hasConcept C75373757 @default.
- W2109758583 hasConcept C96250715 @default.
- W2109758583 hasConceptScore W2109758583C102366305 @default.
- W2109758583 hasConceptScore W2109758583C105795698 @default.
- W2109758583 hasConceptScore W2109758583C106131492 @default.