Matches in SemOpenAlex for { <https://semopenalex.org/work/W2109969031> ?p ?o ?g. }
- W2109969031 abstract "Gene microarray technology is an effective tool to investigate the simultaneous activity of multiple cellular pathways from hundreds to thousands of genes. However, because data in the colossal amounts generated by DNA microarray technology are usually complex, noisy, high-dimensional, and often hindered by low statistical power, their exploitation is difficult. To overcome these problems, two kinds of unsupervised analysis methods for microarray data: principal component analysis (PCA) and independent component analysis (ICA) have been developed to accomplish the task. PCA projects the data into a new space spanned by the principal components that are mutually orthonormal to each other. The constraint of mutual orthogonality and second-order statistics technique within PCA algorithms, however, may not be applied to the biological systems studied. Extracting and characterizing the most informative features of the biological signals, however, require higher-order statistics.ICA is one of the unsupervised algorithms that can extract higher-order statistical structures from data and has been applied to DNA microarray gene expression data analysis. We performed FastICA method on DNA microarray gene expression data from Alzheimer's disease (AD) hippocampal tissue samples and consequential gene clustering. Experimental results showed that the ICA method can improve the clustering results of AD samples and identify significant genes. More than 50 significant genes with high expression levels in severe AD were extracted, representing immunity-related protein, metal-related protein, membrane protein, lipoprotein, neuropeptide, cytoskeleton protein, cellular binding protein, and ribosomal protein. Within the aforementioned categories, our method also found 37 significant genes with low expression levels. Moreover, it is worth noting that some oncogenes and phosphorylation-related proteins are expressed in low levels. In comparison to the PCA and support vector machine recursive feature elimination (SVM-RFE) methods, which are widely used in microarray data analysis, ICA can identify more AD-related genes. Furthermore, we have validated and identified many genes that are associated with AD pathogenesis.We demonstrated that ICA exploits higher-order statistics to identify gene expression profiles as linear combinations of elementary expression patterns that lead to the construction of potential AD-related pathogenic pathways. Our computing results also validated that the ICA model outperformed PCA and the SVM-RFE method. This report shows that ICA as a microarray data analysis tool can help us to elucidate the molecular taxonomy of AD and other multifactorial and polygenic complex diseases." @default.
- W2109969031 created "2016-06-24" @default.
- W2109969031 creator A5001837630 @default.
- W2109969031 creator A5008045674 @default.
- W2109969031 creator A5019612238 @default.
- W2109969031 creator A5033784234 @default.
- W2109969031 creator A5060889456 @default.
- W2109969031 creator A5072036068 @default.
- W2109969031 creator A5080825168 @default.
- W2109969031 date "2009-01-28" @default.
- W2109969031 modified "2023-10-15" @default.
- W2109969031 title "Independent component analysis of Alzheimer's DNA microarray gene expression data" @default.
- W2109969031 cites W1488472140 @default.
- W2109969031 cites W1559476568 @default.
- W2109969031 cites W1576362393 @default.
- W2109969031 cites W1586876258 @default.
- W2109969031 cites W1648176606 @default.
- W2109969031 cites W1772944836 @default.
- W2109969031 cites W1969995127 @default.
- W2109969031 cites W1977956545 @default.
- W2109969031 cites W1980029336 @default.
- W2109969031 cites W1982272254 @default.
- W2109969031 cites W1989777836 @default.
- W2109969031 cites W1990580084 @default.
- W2109969031 cites W1999864873 @default.
- W2109969031 cites W2000771269 @default.
- W2109969031 cites W2004477927 @default.
- W2109969031 cites W2007194591 @default.
- W2109969031 cites W2016820608 @default.
- W2109969031 cites W2019502123 @default.
- W2109969031 cites W2027810531 @default.
- W2109969031 cites W2033248674 @default.
- W2109969031 cites W2037562549 @default.
- W2109969031 cites W2066543052 @default.
- W2109969031 cites W2068011527 @default.
- W2109969031 cites W2075726466 @default.
- W2109969031 cites W2080202391 @default.
- W2109969031 cites W2086541380 @default.
- W2109969031 cites W2090664364 @default.
- W2109969031 cites W2093226717 @default.
- W2109969031 cites W2100918387 @default.
- W2109969031 cites W2105746559 @default.
- W2109969031 cites W2106389606 @default.
- W2109969031 cites W2107015337 @default.
- W2109969031 cites W2114729479 @default.
- W2109969031 cites W2125512776 @default.
- W2109969031 cites W2132977458 @default.
- W2109969031 cites W2134073082 @default.
- W2109969031 cites W2153073444 @default.
- W2109969031 cites W2155120241 @default.
- W2109969031 cites W2155386706 @default.
- W2109969031 cites W2159703006 @default.
- W2109969031 cites W2164198088 @default.
- W2109969031 cites W2171671940 @default.
- W2109969031 doi "https://doi.org/10.1186/1750-1326-4-5" @default.
- W2109969031 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2646728" @default.
- W2109969031 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19173745" @default.
- W2109969031 hasPublicationYear "2009" @default.
- W2109969031 type Work @default.
- W2109969031 sameAs 2109969031 @default.
- W2109969031 citedByCount "69" @default.
- W2109969031 countsByYear W21099690312012 @default.
- W2109969031 countsByYear W21099690312013 @default.
- W2109969031 countsByYear W21099690312014 @default.
- W2109969031 countsByYear W21099690312015 @default.
- W2109969031 countsByYear W21099690312016 @default.
- W2109969031 countsByYear W21099690312017 @default.
- W2109969031 countsByYear W21099690312018 @default.
- W2109969031 countsByYear W21099690312019 @default.
- W2109969031 countsByYear W21099690312020 @default.
- W2109969031 countsByYear W21099690312021 @default.
- W2109969031 countsByYear W21099690312022 @default.
- W2109969031 countsByYear W21099690312023 @default.
- W2109969031 crossrefType "journal-article" @default.
- W2109969031 hasAuthorship W2109969031A5001837630 @default.
- W2109969031 hasAuthorship W2109969031A5008045674 @default.
- W2109969031 hasAuthorship W2109969031A5019612238 @default.
- W2109969031 hasAuthorship W2109969031A5033784234 @default.
- W2109969031 hasAuthorship W2109969031A5060889456 @default.
- W2109969031 hasAuthorship W2109969031A5072036068 @default.
- W2109969031 hasAuthorship W2109969031A5080825168 @default.
- W2109969031 hasBestOaLocation W21099690311 @default.
- W2109969031 hasConcept C104317684 @default.
- W2109969031 hasConcept C124101348 @default.
- W2109969031 hasConcept C150194340 @default.
- W2109969031 hasConcept C153180895 @default.
- W2109969031 hasConcept C154945302 @default.
- W2109969031 hasConcept C27438332 @default.
- W2109969031 hasConcept C41008148 @default.
- W2109969031 hasConcept C51432778 @default.
- W2109969031 hasConcept C54355233 @default.
- W2109969031 hasConcept C60644358 @default.
- W2109969031 hasConcept C70721500 @default.
- W2109969031 hasConcept C73555534 @default.
- W2109969031 hasConcept C8415881 @default.
- W2109969031 hasConcept C86803240 @default.
- W2109969031 hasConcept C95371953 @default.
- W2109969031 hasConceptScore W2109969031C104317684 @default.
- W2109969031 hasConceptScore W2109969031C124101348 @default.
- W2109969031 hasConceptScore W2109969031C150194340 @default.