Matches in SemOpenAlex for { <https://semopenalex.org/work/W2110047303> ?p ?o ?g. }
- W2110047303 endingPage "296" @default.
- W2110047303 startingPage "282" @default.
- W2110047303 abstract "The nonlinearities and time-varying characteristics are two major causes of low performance of soft sensors in process systems. Motivated of solving the two problems, this paper proposes an adaptive soft sensing method under the ensemble learning framework. An improved process state partition scheme is proposed to construct independent local models, which not only inherits the merits of the original process state partition method but also possesses the function of detecting and deleting redundant models. These prepared local models are weighted by a supervised weighting mechanism and then combined via the Bayesian inference to predict the y-value of the query sample. Because the weighting mechanism can fully exploit the historical data set and quantify each local model's generalization ability for the query sample, it is potential to compute the combination weights more accurately. Simulations are conducted on two benchmark data sets from two real-life chemical processes. Extensive performance evaluations of the proposed soft sensor are conducted, and results show its effectiveness. © 2015 Curtin University of Technology and John Wiley & Sons, Ltd." @default.
- W2110047303 created "2016-06-24" @default.
- W2110047303 creator A5044970157 @default.
- W2110047303 creator A5059060896 @default.
- W2110047303 creator A5078024858 @default.
- W2110047303 date "2015-03-01" @default.
- W2110047303 modified "2023-10-16" @default.
- W2110047303 title "Soft sensor development for nonlinear and time-varying processes based on supervised ensemble learning with improved process state partition" @default.
- W2110047303 cites W1483592191 @default.
- W2110047303 cites W1967511636 @default.
- W2110047303 cites W1971385464 @default.
- W2110047303 cites W1998023709 @default.
- W2110047303 cites W2000651380 @default.
- W2110047303 cites W2006881475 @default.
- W2110047303 cites W2009933590 @default.
- W2110047303 cites W2031716888 @default.
- W2110047303 cites W2032058792 @default.
- W2110047303 cites W2034540270 @default.
- W2110047303 cites W2038573408 @default.
- W2110047303 cites W2039212275 @default.
- W2110047303 cites W2043133372 @default.
- W2110047303 cites W2052809458 @default.
- W2110047303 cites W2065636071 @default.
- W2110047303 cites W2071453425 @default.
- W2110047303 cites W2076118331 @default.
- W2110047303 cites W2077496324 @default.
- W2110047303 cites W2077854258 @default.
- W2110047303 cites W2085862958 @default.
- W2110047303 cites W2092570679 @default.
- W2110047303 cites W2094481630 @default.
- W2110047303 cites W2097982640 @default.
- W2110047303 cites W2105722058 @default.
- W2110047303 cites W2121854064 @default.
- W2110047303 cites W2135723127 @default.
- W2110047303 cites W2138728394 @default.
- W2110047303 cites W2139147544 @default.
- W2110047303 cites W2147062914 @default.
- W2110047303 cites W2171446500 @default.
- W2110047303 cites W2327480380 @default.
- W2110047303 cites W2328549108 @default.
- W2110047303 cites W2332443565 @default.
- W2110047303 cites W2774071243 @default.
- W2110047303 cites W4233870591 @default.
- W2110047303 doi "https://doi.org/10.1002/apj.1874" @default.
- W2110047303 hasPublicationYear "2015" @default.
- W2110047303 type Work @default.
- W2110047303 sameAs 2110047303 @default.
- W2110047303 citedByCount "9" @default.
- W2110047303 countsByYear W21100473032016 @default.
- W2110047303 countsByYear W21100473032017 @default.
- W2110047303 countsByYear W21100473032018 @default.
- W2110047303 countsByYear W21100473032019 @default.
- W2110047303 countsByYear W21100473032020 @default.
- W2110047303 crossrefType "journal-article" @default.
- W2110047303 hasAuthorship W2110047303A5044970157 @default.
- W2110047303 hasAuthorship W2110047303A5059060896 @default.
- W2110047303 hasAuthorship W2110047303A5078024858 @default.
- W2110047303 hasConcept C105795698 @default.
- W2110047303 hasConcept C107673813 @default.
- W2110047303 hasConcept C111919701 @default.
- W2110047303 hasConcept C11413529 @default.
- W2110047303 hasConcept C114614502 @default.
- W2110047303 hasConcept C115575686 @default.
- W2110047303 hasConcept C119857082 @default.
- W2110047303 hasConcept C121332964 @default.
- W2110047303 hasConcept C124101348 @default.
- W2110047303 hasConcept C126838900 @default.
- W2110047303 hasConcept C13280743 @default.
- W2110047303 hasConcept C134306372 @default.
- W2110047303 hasConcept C154945302 @default.
- W2110047303 hasConcept C158622935 @default.
- W2110047303 hasConcept C160234255 @default.
- W2110047303 hasConcept C177148314 @default.
- W2110047303 hasConcept C183115368 @default.
- W2110047303 hasConcept C183560197 @default.
- W2110047303 hasConcept C185798385 @default.
- W2110047303 hasConcept C19499675 @default.
- W2110047303 hasConcept C205649164 @default.
- W2110047303 hasConcept C2776214188 @default.
- W2110047303 hasConcept C2781395549 @default.
- W2110047303 hasConcept C33923547 @default.
- W2110047303 hasConcept C41008148 @default.
- W2110047303 hasConcept C42812 @default.
- W2110047303 hasConcept C45942800 @default.
- W2110047303 hasConcept C48103436 @default.
- W2110047303 hasConcept C62520636 @default.
- W2110047303 hasConcept C71924100 @default.
- W2110047303 hasConcept C98045186 @default.
- W2110047303 hasConceptScore W2110047303C105795698 @default.
- W2110047303 hasConceptScore W2110047303C107673813 @default.
- W2110047303 hasConceptScore W2110047303C111919701 @default.
- W2110047303 hasConceptScore W2110047303C11413529 @default.
- W2110047303 hasConceptScore W2110047303C114614502 @default.
- W2110047303 hasConceptScore W2110047303C115575686 @default.
- W2110047303 hasConceptScore W2110047303C119857082 @default.
- W2110047303 hasConceptScore W2110047303C121332964 @default.
- W2110047303 hasConceptScore W2110047303C124101348 @default.
- W2110047303 hasConceptScore W2110047303C126838900 @default.