Matches in SemOpenAlex for { <https://semopenalex.org/work/W2110052988> ?p ?o ?g. }
- W2110052988 abstract "In concurrency theory—the branch of (theoretical) computer science that studies the logical and mathematical foundations of parallel computation—there are two main formal ways of modelling the behaviour of systems where multiple actions or events can happen independently and at the same time: either with interleaving or with partial order semantics. On the one hand, the interleaving semantics approach proposes to reduce concurrency to the nondeterministic, sequential computation of the events the system can perform independently. On the other hand, partial order semantics represent concurrency explicitly by means of an independence relation on the set of events that the system can execute in parallel; following this approach, the so-called ‘true concurrency’ approach, independence or concurrency is a primitive notion rather than a derived concept as in the interleaving framework. Using interleaving or partial order semantics is, however, more than a matter of taste. In fact, choosing one kind of semantics over the other can have important implications—both from theoretical and practical viewpoints—as making such a choice can raise different issues, some of which we investigate here. More specifically, this thesis studies concurrent systems with partial order semantics and focuses on their bisimulation and model-checking problems; the theories and techniques herein apply, in a uniform way, to different classes of Petri nets, event structures, and transition system with independence (TSI) models. Some results of this work are: a number of mu-calculi (in this case, fixpoint extensions of modal logic) that, in certain classes of systems, induce exactly the same identifications as some of the standard bisimulation equivalences used in concurrency. Secondly, the introduction of (infinite) higher-order logic games for bisimulation and for model-checking, where the players of the games are given (local) monadic second-order power on the sets of elements they are allowed to play. And, finally, the formalization of a new order-theoretic concurrent game model that provides a uniform approach to bisimulation and model-checking and bridges some mathematical concepts in order theory with the more operational world of games. In particular, we show that in all cases the logic games for bisimulation and model-checking developed in this thesis are sound and complete, and therefore, also determined—even when considering models of infinite state systems; moreover, these logic games are decidable in the finite case and underpin novel decision procedures for systems verification. Since the mu-calculi and (infinite) logic games studied here generalisewell-known fixpoint modal logics as well as game-theoretic decision procedures for analysing concurrent systems with interleaving semantics, this thesis provides some of the groundwork for the design of a logic-based, game-theoretic framework for studying, in a uniform manner, several concurrent systems regardless of whether they have an interleaving or a partial order semantics." @default.
- W2110052988 created "2016-06-24" @default.
- W2110052988 creator A5007740136 @default.
- W2110052988 date "2011-06-30" @default.
- W2110052988 modified "2023-09-27" @default.
- W2110052988 title "On bisimulation and model-checking for concurrent systems with partial order semantics" @default.
- W2110052988 cites W1492826910 @default.
- W2110052988 cites W1493916325 @default.
- W2110052988 cites W1501731334 @default.
- W2110052988 cites W1503170978 @default.
- W2110052988 cites W1503973138 @default.
- W2110052988 cites W1506588809 @default.
- W2110052988 cites W1507873625 @default.
- W2110052988 cites W1524031113 @default.
- W2110052988 cites W1524771661 @default.
- W2110052988 cites W1525816981 @default.
- W2110052988 cites W1529088080 @default.
- W2110052988 cites W1532426035 @default.
- W2110052988 cites W1543119109 @default.
- W2110052988 cites W1543590097 @default.
- W2110052988 cites W1547562281 @default.
- W2110052988 cites W1549968516 @default.
- W2110052988 cites W1551214605 @default.
- W2110052988 cites W1557351135 @default.
- W2110052988 cites W1568729458 @default.
- W2110052988 cites W1570780024 @default.
- W2110052988 cites W1573078772 @default.
- W2110052988 cites W1578801263 @default.
- W2110052988 cites W1593010335 @default.
- W2110052988 cites W1604132373 @default.
- W2110052988 cites W1604609132 @default.
- W2110052988 cites W1606452969 @default.
- W2110052988 cites W1607311426 @default.
- W2110052988 cites W1679534293 @default.
- W2110052988 cites W1888236768 @default.
- W2110052988 cites W1974206804 @default.
- W2110052988 cites W1974321100 @default.
- W2110052988 cites W1978145943 @default.
- W2110052988 cites W1978469611 @default.
- W2110052988 cites W1980850065 @default.
- W2110052988 cites W1984801861 @default.
- W2110052988 cites W1991052229 @default.
- W2110052988 cites W1992582873 @default.
- W2110052988 cites W1995251574 @default.
- W2110052988 cites W2003972637 @default.
- W2110052988 cites W2006265470 @default.
- W2110052988 cites W2009372148 @default.
- W2110052988 cites W2013474929 @default.
- W2110052988 cites W2015640848 @default.
- W2110052988 cites W2021473546 @default.
- W2110052988 cites W2025902224 @default.
- W2110052988 cites W2029027766 @default.
- W2110052988 cites W2035959929 @default.
- W2110052988 cites W2039290601 @default.
- W2110052988 cites W2041203617 @default.
- W2110052988 cites W2045033210 @default.
- W2110052988 cites W2046213250 @default.
- W2110052988 cites W2048905609 @default.
- W2110052988 cites W2058101359 @default.
- W2110052988 cites W2062081943 @default.
- W2110052988 cites W2083896385 @default.
- W2110052988 cites W2093916942 @default.
- W2110052988 cites W2097026217 @default.
- W2110052988 cites W2098676070 @default.
- W2110052988 cites W2105702545 @default.
- W2110052988 cites W2107067818 @default.
- W2110052988 cites W2107144615 @default.
- W2110052988 cites W2107171883 @default.
- W2110052988 cites W2111763696 @default.
- W2110052988 cites W2112535338 @default.
- W2110052988 cites W2113800199 @default.
- W2110052988 cites W2114077959 @default.
- W2110052988 cites W2115456224 @default.
- W2110052988 cites W2116322260 @default.
- W2110052988 cites W2120878557 @default.
- W2110052988 cites W2121108713 @default.
- W2110052988 cites W2129296169 @default.
- W2110052988 cites W2132761501 @default.
- W2110052988 cites W2134326845 @default.
- W2110052988 cites W2137307988 @default.
- W2110052988 cites W2137628566 @default.
- W2110052988 cites W2137865376 @default.
- W2110052988 cites W2141422781 @default.
- W2110052988 cites W2151686102 @default.
- W2110052988 cites W2168498451 @default.
- W2110052988 cites W2168690953 @default.
- W2110052988 cites W2172209948 @default.
- W2110052988 cites W2173961470 @default.
- W2110052988 cites W2338741952 @default.
- W2110052988 cites W2439559863 @default.
- W2110052988 cites W2485260361 @default.
- W2110052988 cites W2570165438 @default.
- W2110052988 cites W2809037521 @default.
- W2110052988 cites W2911865844 @default.
- W2110052988 cites W2913459036 @default.
- W2110052988 cites W30921532 @default.
- W2110052988 cites W3160064372 @default.
- W2110052988 cites W42134522 @default.
- W2110052988 cites W654554709 @default.
- W2110052988 cites W100298686 @default.