Matches in SemOpenAlex for { <https://semopenalex.org/work/W2110116143> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2110116143 abstract "With the advances of wireless sensor networks and their ability to generate a large amount of data, data mining techniques to extract useful knowledge regarding the underlying network have recently received a great deal of attention. However, the stream nature of the data, the limited resources, and the distributed nature of sensor networks bring new challenges for the mining techniques that need to be address. In this paper, we introduce a new formulation for the association rules, a well known data mining technique, that is able to generate the time relations between sensor devices in a particular sensor network. This new formulation will allow traditional data mining algorithms proposed to solve the classical association rules mining problem to be applied on sensor based class of applications that generate and use sensor data. The generated rules will give a clear picture about the correlations between sensors in the network and can be used to make decisions about the network performance, or it can be used to predict the sources of future events. In order to prepare for the data needed in the mining process and to maximize the network lifetime, a distributed extraction methodology is introduced, in this distributed methodology sensors perform optimization based on local computation to decide whether it will participate in sending data or not. Experimental results have shown that the distributed extraction solution is able to reduce the number of exchanged messages and the data size by 50% compared to a direct transmission of the data." @default.
- W2110116143 created "2016-06-24" @default.
- W2110116143 creator A5012195474 @default.
- W2110116143 creator A5073239630 @default.
- W2110116143 date "2007-06-01" @default.
- W2110116143 modified "2023-09-25" @default.
- W2110116143 title "An Efficient Data Extraction Mechanism for Mining Association Rules from Wireless Sensor Networks" @default.
- W2110116143 cites W1496967303 @default.
- W2110116143 cites W1497411990 @default.
- W2110116143 cites W1824634186 @default.
- W2110116143 cites W2030969394 @default.
- W2110116143 cites W2064853889 @default.
- W2110116143 cites W2140212215 @default.
- W2110116143 cites W2158174031 @default.
- W2110116143 cites W2166559705 @default.
- W2110116143 cites W2962815591 @default.
- W2110116143 cites W84374273 @default.
- W2110116143 doi "https://doi.org/10.1109/icc.2007.648" @default.
- W2110116143 hasPublicationYear "2007" @default.
- W2110116143 type Work @default.
- W2110116143 sameAs 2110116143 @default.
- W2110116143 citedByCount "25" @default.
- W2110116143 countsByYear W21101161432012 @default.
- W2110116143 countsByYear W21101161432013 @default.
- W2110116143 countsByYear W21101161432014 @default.
- W2110116143 countsByYear W21101161432015 @default.
- W2110116143 countsByYear W21101161432016 @default.
- W2110116143 countsByYear W21101161432018 @default.
- W2110116143 countsByYear W21101161432019 @default.
- W2110116143 countsByYear W21101161432020 @default.
- W2110116143 countsByYear W21101161432021 @default.
- W2110116143 countsByYear W21101161432022 @default.
- W2110116143 crossrefType "proceedings-article" @default.
- W2110116143 hasAuthorship W2110116143A5012195474 @default.
- W2110116143 hasAuthorship W2110116143A5073239630 @default.
- W2110116143 hasConcept C111919701 @default.
- W2110116143 hasConcept C11413529 @default.
- W2110116143 hasConcept C120314980 @default.
- W2110116143 hasConcept C120567893 @default.
- W2110116143 hasConcept C124101348 @default.
- W2110116143 hasConcept C193524817 @default.
- W2110116143 hasConcept C24590314 @default.
- W2110116143 hasConcept C31258907 @default.
- W2110116143 hasConcept C41008148 @default.
- W2110116143 hasConcept C45374587 @default.
- W2110116143 hasConcept C89198739 @default.
- W2110116143 hasConcept C98045186 @default.
- W2110116143 hasConceptScore W2110116143C111919701 @default.
- W2110116143 hasConceptScore W2110116143C11413529 @default.
- W2110116143 hasConceptScore W2110116143C120314980 @default.
- W2110116143 hasConceptScore W2110116143C120567893 @default.
- W2110116143 hasConceptScore W2110116143C124101348 @default.
- W2110116143 hasConceptScore W2110116143C193524817 @default.
- W2110116143 hasConceptScore W2110116143C24590314 @default.
- W2110116143 hasConceptScore W2110116143C31258907 @default.
- W2110116143 hasConceptScore W2110116143C41008148 @default.
- W2110116143 hasConceptScore W2110116143C45374587 @default.
- W2110116143 hasConceptScore W2110116143C89198739 @default.
- W2110116143 hasConceptScore W2110116143C98045186 @default.
- W2110116143 hasLocation W21101161431 @default.
- W2110116143 hasOpenAccess W2110116143 @default.
- W2110116143 hasPrimaryLocation W21101161431 @default.
- W2110116143 hasRelatedWork W1484413656 @default.
- W2110116143 hasRelatedWork W1497411990 @default.
- W2110116143 hasRelatedWork W2026093231 @default.
- W2110116143 hasRelatedWork W2064853889 @default.
- W2110116143 hasRelatedWork W2067280089 @default.
- W2110116143 hasRelatedWork W2096156616 @default.
- W2110116143 hasRelatedWork W2097027644 @default.
- W2110116143 hasRelatedWork W2117427846 @default.
- W2110116143 hasRelatedWork W2150821526 @default.
- W2110116143 hasRelatedWork W2158456748 @default.
- W2110116143 hasRelatedWork W2164116786 @default.
- W2110116143 hasRelatedWork W2166559705 @default.
- W2110116143 hasRelatedWork W2168720188 @default.
- W2110116143 hasRelatedWork W2313217155 @default.
- W2110116143 hasRelatedWork W2331548124 @default.
- W2110116143 hasRelatedWork W2545356923 @default.
- W2110116143 hasRelatedWork W2601029518 @default.
- W2110116143 hasRelatedWork W2962815591 @default.
- W2110116143 hasRelatedWork W3153202114 @default.
- W2110116143 hasRelatedWork W84374273 @default.
- W2110116143 isParatext "false" @default.
- W2110116143 isRetracted "false" @default.
- W2110116143 magId "2110116143" @default.
- W2110116143 workType "article" @default.