Matches in SemOpenAlex for { <https://semopenalex.org/work/W2110137080> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2110137080 abstract "Spiking neural network simulators provide environments in which to implement and experiment with models of biological brain structures. Simulating large-scale models is computationally expensive, however, due to the number and interconnectedness of neurons in the brain. Furthermore, where such simulations are used in an embodied setting, the simulation must be real-time in order to be useful. In this paper we present a platform (nemo) for such simulations which achieves high performance on parallel commodity hardware in the form of graphics processing units (GPUs). This work makes use of the Izhikevich neuron model which provides a range of realistic spiking dynamics while being computationally efficient. Learning is facilitated through spike-timing dependent synaptic plasticity. Our GPU kernel can deliver up to 550 million spikes per second using a single device. This corresponds to a real-time simulation of around 55 000 neurons under biologically plausible conditions with 1000 synapses per neuron and a mean firing rate of 10 Hz." @default.
- W2110137080 created "2016-06-24" @default.
- W2110137080 creator A5032865587 @default.
- W2110137080 creator A5072322524 @default.
- W2110137080 date "2010-07-01" @default.
- W2110137080 modified "2023-09-30" @default.
- W2110137080 title "Accelerated simulation of spiking neural networks using GPUs" @default.
- W2110137080 cites W1486852018 @default.
- W2110137080 cites W1818714246 @default.
- W2110137080 cites W1993792073 @default.
- W2110137080 cites W2026864246 @default.
- W2110137080 cites W2101765488 @default.
- W2110137080 cites W2107433900 @default.
- W2110137080 cites W2151542182 @default.
- W2110137080 cites W2152502378 @default.
- W2110137080 cites W2153287508 @default.
- W2110137080 cites W2154439184 @default.
- W2110137080 cites W2164653071 @default.
- W2110137080 cites W2170942403 @default.
- W2110137080 doi "https://doi.org/10.1109/ijcnn.2010.5596678" @default.
- W2110137080 hasPublicationYear "2010" @default.
- W2110137080 type Work @default.
- W2110137080 sameAs 2110137080 @default.
- W2110137080 citedByCount "82" @default.
- W2110137080 countsByYear W21101370802012 @default.
- W2110137080 countsByYear W21101370802013 @default.
- W2110137080 countsByYear W21101370802014 @default.
- W2110137080 countsByYear W21101370802015 @default.
- W2110137080 countsByYear W21101370802016 @default.
- W2110137080 countsByYear W21101370802017 @default.
- W2110137080 countsByYear W21101370802018 @default.
- W2110137080 countsByYear W21101370802019 @default.
- W2110137080 countsByYear W21101370802020 @default.
- W2110137080 countsByYear W21101370802021 @default.
- W2110137080 countsByYear W21101370802022 @default.
- W2110137080 countsByYear W21101370802023 @default.
- W2110137080 crossrefType "proceedings-article" @default.
- W2110137080 hasAuthorship W2110137080A5032865587 @default.
- W2110137080 hasAuthorship W2110137080A5072322524 @default.
- W2110137080 hasConcept C114614502 @default.
- W2110137080 hasConcept C115903868 @default.
- W2110137080 hasConcept C11731999 @default.
- W2110137080 hasConcept C121684516 @default.
- W2110137080 hasConcept C154945302 @default.
- W2110137080 hasConcept C173608175 @default.
- W2110137080 hasConcept C186565885 @default.
- W2110137080 hasConcept C21442007 @default.
- W2110137080 hasConcept C2781390188 @default.
- W2110137080 hasConcept C33923547 @default.
- W2110137080 hasConcept C41008148 @default.
- W2110137080 hasConcept C50644808 @default.
- W2110137080 hasConcept C74193536 @default.
- W2110137080 hasConceptScore W2110137080C114614502 @default.
- W2110137080 hasConceptScore W2110137080C115903868 @default.
- W2110137080 hasConceptScore W2110137080C11731999 @default.
- W2110137080 hasConceptScore W2110137080C121684516 @default.
- W2110137080 hasConceptScore W2110137080C154945302 @default.
- W2110137080 hasConceptScore W2110137080C173608175 @default.
- W2110137080 hasConceptScore W2110137080C186565885 @default.
- W2110137080 hasConceptScore W2110137080C21442007 @default.
- W2110137080 hasConceptScore W2110137080C2781390188 @default.
- W2110137080 hasConceptScore W2110137080C33923547 @default.
- W2110137080 hasConceptScore W2110137080C41008148 @default.
- W2110137080 hasConceptScore W2110137080C50644808 @default.
- W2110137080 hasConceptScore W2110137080C74193536 @default.
- W2110137080 hasLocation W21101370801 @default.
- W2110137080 hasOpenAccess W2110137080 @default.
- W2110137080 hasPrimaryLocation W21101370801 @default.
- W2110137080 hasRelatedWork W1994918405 @default.
- W2110137080 hasRelatedWork W2036865045 @default.
- W2110137080 hasRelatedWork W2091810626 @default.
- W2110137080 hasRelatedWork W2101433970 @default.
- W2110137080 hasRelatedWork W2107864377 @default.
- W2110137080 hasRelatedWork W2152982954 @default.
- W2110137080 hasRelatedWork W2364763567 @default.
- W2110137080 hasRelatedWork W3162939457 @default.
- W2110137080 hasRelatedWork W4294786480 @default.
- W2110137080 hasRelatedWork W4375854128 @default.
- W2110137080 isParatext "false" @default.
- W2110137080 isRetracted "false" @default.
- W2110137080 magId "2110137080" @default.
- W2110137080 workType "article" @default.