Matches in SemOpenAlex for { <https://semopenalex.org/work/W2110149554> ?p ?o ?g. }
- W2110149554 endingPage "30" @default.
- W2110149554 startingPage "1" @default.
- W2110149554 abstract "Twenty-one land-surface schemes (LSSs) participated in the Project for Intercomparison of Land-surface Parameterizations (PILPS) Phase 2(e) experiment, which used data from the Torne–Kalix Rivers in northern Scandinavia. Atmospheric forcing data (precipitation, air temperature, specific humidity, wind speed, downward shortwave and longwave radiation) for a 20-year period (1979–1998) were provided to the 21 participating modeling groups for 218 1/4° grid cells that represented the study domain. The first decade (1979–1988) of the period was used for model spin-up. The quality of meteorologic forcing variables is of particular concern in high-latitude experiments and the quality of the gridded dataset was assessed to the extent possible. The lack of sub-daily precipitation, underestimation of true precipitation and the necessity to estimate incoming solar radiation were the primary data concerns for this study. The results from two of the three types of runs are analyzed in this, the first of a three-part paper: (1) calibration–validation runs—calibration of model parameters using observed streamflow was allowed for two small catchments (570 and 1300 km2), and parameters were then transferred to two other catchments of roughly similar size (2600 and 1500 km2) to assess the ability of models to represent ungauged areas elsewhere; and 2) reruns—using revised forcing data (to resolve problems with apparent underestimation of solar radiation of approximately 36%, and certain other problems with surface wind in the original forcing data). Model results for the period 1989–1998 are used to evaluate the performance of the participating land-surface schemes in a context that allows exploration of their ability to capture key processes spatially. In general, the experiment demonstrated that many of the LSSs are able to capture the limitations imposed on annual latent heat by the small net radiation available in this high-latitude environment. Simulated annual average net radiation varied between 16 and 40 W/m2 for the 21 models, and latent heat varied between 18 and 36 W/m2. Among-model differences in winter latent heat due to the treatment of aerodynamic resistance appear to be at least as important as those attributable to the treatment of canopy interception. In many models, the small annual net radiation forced negative sensible heat on average, which varied among the models between −11 and 9 W/m2. Even though the largest evaporation rates occur in the summer (June, July and August), model-predicted snow sublimation in winter has proportionately more influence on differences in annual runoff volume among the models. A calibration experiment for four small sub-catchments of the Torne–Kalix basin showed that model parameters that are typically adjusted during calibration, those that control storage of moisture in the soil column or on the land surface via ponding, influence the seasonal distribution of runoff, but have relatively little impact on annual runoff ratios. Similarly, there was no relationship between annual runoff ratios and the proportion of surface and subsurface discharge for the basin as a whole." @default.
- W2110149554 created "2016-06-24" @default.
- W2110149554 creator A5003718432 @default.
- W2110149554 creator A5009083191 @default.
- W2110149554 creator A5010508325 @default.
- W2110149554 creator A5012027800 @default.
- W2110149554 creator A5012049201 @default.
- W2110149554 creator A5016879511 @default.
- W2110149554 creator A5017063171 @default.
- W2110149554 creator A5019281835 @default.
- W2110149554 creator A5025625200 @default.
- W2110149554 creator A5027557327 @default.
- W2110149554 creator A5028336449 @default.
- W2110149554 creator A5038037454 @default.
- W2110149554 creator A5040977258 @default.
- W2110149554 creator A5045743180 @default.
- W2110149554 creator A5053945818 @default.
- W2110149554 creator A5055178909 @default.
- W2110149554 creator A5061955485 @default.
- W2110149554 creator A5067266696 @default.
- W2110149554 creator A5068658537 @default.
- W2110149554 creator A5075802620 @default.
- W2110149554 creator A5078839755 @default.
- W2110149554 creator A5080389321 @default.
- W2110149554 creator A5082540817 @default.
- W2110149554 creator A5087580167 @default.
- W2110149554 creator A5087910064 @default.
- W2110149554 creator A5090600560 @default.
- W2110149554 creator A5090957112 @default.
- W2110149554 date "2003-07-01" @default.
- W2110149554 modified "2023-10-13" @default.
- W2110149554 title "Simulation of high-latitude hydrological processes in the Torne–Kalix basin: PILPS Phase 2(e)" @default.
- W2110149554 cites W116946507 @default.
- W2110149554 cites W1489391535 @default.
- W2110149554 cites W1631513232 @default.
- W2110149554 cites W1638331687 @default.
- W2110149554 cites W1979347968 @default.
- W2110149554 cites W1979940232 @default.
- W2110149554 cites W1981595366 @default.
- W2110149554 cites W1984288338 @default.
- W2110149554 cites W1986433447 @default.
- W2110149554 cites W1987244274 @default.
- W2110149554 cites W1992103682 @default.
- W2110149554 cites W1994954836 @default.
- W2110149554 cites W2006021258 @default.
- W2110149554 cites W2024346832 @default.
- W2110149554 cites W2033221642 @default.
- W2110149554 cites W2034535553 @default.
- W2110149554 cites W2034857520 @default.
- W2110149554 cites W2044498659 @default.
- W2110149554 cites W2053069787 @default.
- W2110149554 cites W2053082698 @default.
- W2110149554 cites W2057151500 @default.
- W2110149554 cites W2063741461 @default.
- W2110149554 cites W2066463182 @default.
- W2110149554 cites W2072864886 @default.
- W2110149554 cites W2074519733 @default.
- W2110149554 cites W2080604996 @default.
- W2110149554 cites W2087105362 @default.
- W2110149554 cites W2091348587 @default.
- W2110149554 cites W2091514122 @default.
- W2110149554 cites W2095029195 @default.
- W2110149554 cites W2098615344 @default.
- W2110149554 cites W2104999529 @default.
- W2110149554 cites W2107262688 @default.
- W2110149554 cites W2138408852 @default.
- W2110149554 cites W2143494625 @default.
- W2110149554 cites W2153063567 @default.
- W2110149554 cites W2159780131 @default.
- W2110149554 cites W2163816662 @default.
- W2110149554 cites W2165742524 @default.
- W2110149554 cites W2168769901 @default.
- W2110149554 cites W2173251738 @default.
- W2110149554 cites W2176082815 @default.
- W2110149554 cites W2179562454 @default.
- W2110149554 cites W2321223643 @default.
- W2110149554 cites W2508070293 @default.
- W2110149554 cites W53919181 @default.
- W2110149554 doi "https://doi.org/10.1016/s0921-8181(03)00003-1" @default.
- W2110149554 hasPublicationYear "2003" @default.
- W2110149554 type Work @default.
- W2110149554 sameAs 2110149554 @default.
- W2110149554 citedByCount "199" @default.
- W2110149554 countsByYear W21101495542012 @default.
- W2110149554 countsByYear W21101495542013 @default.
- W2110149554 countsByYear W21101495542014 @default.
- W2110149554 countsByYear W21101495542015 @default.
- W2110149554 countsByYear W21101495542016 @default.
- W2110149554 countsByYear W21101495542017 @default.
- W2110149554 countsByYear W21101495542018 @default.
- W2110149554 countsByYear W21101495542019 @default.
- W2110149554 countsByYear W21101495542020 @default.
- W2110149554 countsByYear W21101495542021 @default.
- W2110149554 countsByYear W21101495542022 @default.
- W2110149554 countsByYear W21101495542023 @default.
- W2110149554 crossrefType "journal-article" @default.
- W2110149554 hasAuthorship W2110149554A5003718432 @default.
- W2110149554 hasAuthorship W2110149554A5009083191 @default.