Matches in SemOpenAlex for { <https://semopenalex.org/work/W2110179322> ?p ?o ?g. }
- W2110179322 endingPage "1" @default.
- W2110179322 startingPage "1" @default.
- W2110179322 abstract "New and novel high-throughput systems for measurement of biological and physiological data have created a challenge: processing and analyzing the abundant resulting datastreams. There is a need for advanced computational methods to process these often very large datasets, and more generally to form decision-support systems for complex problems in medicine, biology, and related fields. During the last few decades, the vital role of these computational methods, in particular in emerging fields of life sciences such as translational medicine, has been further recognized. The need for more efficient computational methods has highlighted their roles as fundamental elements of almost any endeavor in today's life sciences. The current focus of these fields is on designing computational methods that facilitate the design and development of systems for clinical applications.This special issue serves as a brief update to the current status of and advances in methods of biomedical informatics and bioinformatics. The computational approaches presented span a number of methods, from newly developed algorithms in DNA microarray analysis to biomedical signal/image processing techniques. The particular diseases as well as remedies addressed, from novel components of schizophrenia to new diagnoses of breast cancer, address major health issues that any society today is likely to be facing. The paper by M. Logotheti et al. provides a comparative genomic study in patients suffering from schizophrenic and bipolar disorders using microarray expression profiling meta-analysis. A. Belle et al. present a survey of biomedical informatics, methods, and applications, as applied to computer-aided decision support systems. The paper by J. H. Phan et al. presents a meta-analysis-based feature selection method to combine multiple microarray datasets and improve reproducibility in identification of informative genes and subsequent clinical prediction. Finally, M. Burton et al. provide a cross-study comparison of classification methods of gene expression profiles for predicting metastasis in breast cancer. With the current burst of new biomedical measurement systems (in particular portable monitoring devices) among many new data sources, there are now petabyte and higher capacity biomedical databases requiring processing via ever-more efficient computational methods. Work on their designs in bioinformatics and biomedical informatics will accelerate further their quality and capacity, as imaging and monitoring technologies produce ever larger quantities of more detailed and more informative data. These works are continuing the advance of the above technologies and their frontiers.Kayvan NajarianRachid DericheMark A. KonNina S. T. Hirata" @default.
- W2110179322 created "2016-06-24" @default.
- W2110179322 creator A5011625832 @default.
- W2110179322 creator A5067697464 @default.
- W2110179322 creator A5070448763 @default.
- W2110179322 creator A5082632190 @default.
- W2110179322 date "2013-01-01" @default.
- W2110179322 modified "2023-10-13" @default.
- W2110179322 title "Bioinformatics and Biomedical Informatics" @default.
- W2110179322 cites W1503794777 @default.
- W2110179322 cites W1554944419 @default.
- W2110179322 cites W1607267312 @default.
- W2110179322 cites W1773554468 @default.
- W2110179322 cites W1987485110 @default.
- W2110179322 cites W1988818350 @default.
- W2110179322 cites W1999463736 @default.
- W2110179322 cites W2003216544 @default.
- W2110179322 cites W2005827916 @default.
- W2110179322 cites W2007176121 @default.
- W2110179322 cites W2007997332 @default.
- W2110179322 cites W2015567955 @default.
- W2110179322 cites W2031909174 @default.
- W2110179322 cites W2037181729 @default.
- W2110179322 cites W2047729457 @default.
- W2110179322 cites W2049129660 @default.
- W2110179322 cites W2068707911 @default.
- W2110179322 cites W2072437897 @default.
- W2110179322 cites W2077389076 @default.
- W2110179322 cites W2084324996 @default.
- W2110179322 cites W2088160256 @default.
- W2110179322 cites W2093314477 @default.
- W2110179322 cites W2105995290 @default.
- W2110179322 cites W2108043112 @default.
- W2110179322 cites W2109103446 @default.
- W2110179322 cites W2111539174 @default.
- W2110179322 cites W2115358726 @default.
- W2110179322 cites W2118413367 @default.
- W2110179322 cites W2121647584 @default.
- W2110179322 cites W2128957040 @default.
- W2110179322 cites W2128985829 @default.
- W2110179322 cites W2131822674 @default.
- W2110179322 cites W2134932622 @default.
- W2110179322 cites W2144302952 @default.
- W2110179322 cites W2150671673 @default.
- W2110179322 cites W2151236279 @default.
- W2110179322 cites W2152578842 @default.
- W2110179322 cites W2154947819 @default.
- W2110179322 cites W2155345760 @default.
- W2110179322 cites W2156273110 @default.
- W2110179322 cites W2156909104 @default.
- W2110179322 cites W2160450758 @default.
- W2110179322 cites W2163563958 @default.
- W2110179322 cites W2166335548 @default.
- W2110179322 cites W2168960022 @default.
- W2110179322 cites W2204553623 @default.
- W2110179322 cites W2911964244 @default.
- W2110179322 cites W2912934387 @default.
- W2110179322 cites W378023 @default.
- W2110179322 doi "https://doi.org/10.1155/2013/591976" @default.
- W2110179322 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3681308" @default.
- W2110179322 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23818827" @default.
- W2110179322 hasPublicationYear "2013" @default.
- W2110179322 type Work @default.
- W2110179322 sameAs 2110179322 @default.
- W2110179322 citedByCount "1" @default.
- W2110179322 countsByYear W21101793222023 @default.
- W2110179322 crossrefType "journal-article" @default.
- W2110179322 hasAuthorship W2110179322A5011625832 @default.
- W2110179322 hasAuthorship W2110179322A5067697464 @default.
- W2110179322 hasAuthorship W2110179322A5070448763 @default.
- W2110179322 hasAuthorship W2110179322A5082632190 @default.
- W2110179322 hasBestOaLocation W21101793221 @default.
- W2110179322 hasConcept C138816342 @default.
- W2110179322 hasConcept C142724271 @default.
- W2110179322 hasConcept C145642194 @default.
- W2110179322 hasConcept C17744445 @default.
- W2110179322 hasConcept C191630685 @default.
- W2110179322 hasConcept C199539241 @default.
- W2110179322 hasConcept C2522767166 @default.
- W2110179322 hasConcept C41008148 @default.
- W2110179322 hasConcept C60644358 @default.
- W2110179322 hasConcept C70721500 @default.
- W2110179322 hasConcept C71924100 @default.
- W2110179322 hasConcept C86803240 @default.
- W2110179322 hasConceptScore W2110179322C138816342 @default.
- W2110179322 hasConceptScore W2110179322C142724271 @default.
- W2110179322 hasConceptScore W2110179322C145642194 @default.
- W2110179322 hasConceptScore W2110179322C17744445 @default.
- W2110179322 hasConceptScore W2110179322C191630685 @default.
- W2110179322 hasConceptScore W2110179322C199539241 @default.
- W2110179322 hasConceptScore W2110179322C2522767166 @default.
- W2110179322 hasConceptScore W2110179322C41008148 @default.
- W2110179322 hasConceptScore W2110179322C60644358 @default.
- W2110179322 hasConceptScore W2110179322C70721500 @default.
- W2110179322 hasConceptScore W2110179322C71924100 @default.
- W2110179322 hasConceptScore W2110179322C86803240 @default.
- W2110179322 hasLocation W21101793221 @default.
- W2110179322 hasLocation W21101793222 @default.