Matches in SemOpenAlex for { <https://semopenalex.org/work/W2110203423> ?p ?o ?g. }
- W2110203423 endingPage "1061" @default.
- W2110203423 startingPage "1051" @default.
- W2110203423 abstract "Extracting information from multitrial magnetoencephalography or electroencephalography (EEG) recordings is challenging because of the very low SNR, and because of the inherent variability of brain responses. The problem of low SNR is commonly tackled by averaging multiple repetitions of the recordings, also called trials, but the variability of response across trials leads to biased results and limits interpretability. This paper proposes to decode the variability of neural responses by making use of graph representations. Our approach has several advantages compared to other existing methods that process single-trial data: first, it avoids the <i xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>a priori</i> definition of a model for the waveform of the neural response; second, it does not make use of the average data for parameter estimation; third, it does not suffer from initialization problems by providing solutions that are global optimum of cost functions; and last, it is fast. We proceed in two steps. First, a manifold learning algorithm, based on a graph Laplacian, offers an efficient way of ordering trials with respect to the response variability, under the condition that this variability itself depends on a single parameter. Second, the estimation of the variability is formulated as a combinatorial optimization that can be solved very efficiently using graph cuts. Details and validation of this second step are provided for latency estimation. Performance and robustness experiments are conducted on synthetic data, and results are presented on EEG data from a P300 oddball experiment." @default.
- W2110203423 created "2016-06-24" @default.
- W2110203423 creator A5018256474 @default.
- W2110203423 creator A5079220399 @default.
- W2110203423 creator A5087620365 @default.
- W2110203423 date "2010-05-01" @default.
- W2110203423 modified "2023-09-27" @default.
- W2110203423 title "Graph-Based Variability Estimation in Single-Trial Event-Related Neural Responses" @default.
- W2110203423 cites W1506690472 @default.
- W2110203423 cites W1971131026 @default.
- W2110203423 cites W1990928820 @default.
- W2110203423 cites W2001056295 @default.
- W2110203423 cites W2002409151 @default.
- W2110203423 cites W2004206848 @default.
- W2110203423 cites W2006554089 @default.
- W2110203423 cites W2016980059 @default.
- W2110203423 cites W2020999234 @default.
- W2110203423 cites W2029407633 @default.
- W2110203423 cites W2059947754 @default.
- W2110203423 cites W2062876788 @default.
- W2110203423 cites W2067932878 @default.
- W2110203423 cites W2071860689 @default.
- W2110203423 cites W2078395802 @default.
- W2110203423 cites W2078832493 @default.
- W2110203423 cites W2097308346 @default.
- W2110203423 cites W2101309634 @default.
- W2110203423 cites W2113137767 @default.
- W2110203423 cites W2120312678 @default.
- W2110203423 cites W2127492761 @default.
- W2110203423 cites W2128495200 @default.
- W2110203423 cites W2130428575 @default.
- W2110203423 cites W2131781771 @default.
- W2110203423 cites W2137252120 @default.
- W2110203423 cites W2154330636 @default.
- W2110203423 cites W2157659878 @default.
- W2110203423 cites W60423602 @default.
- W2110203423 cites W2107007717 @default.
- W2110203423 cites W2142351263 @default.
- W2110203423 doi "https://doi.org/10.1109/tbme.2009.2037139" @default.
- W2110203423 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20142163" @default.
- W2110203423 hasPublicationYear "2010" @default.
- W2110203423 type Work @default.
- W2110203423 sameAs 2110203423 @default.
- W2110203423 citedByCount "17" @default.
- W2110203423 countsByYear W21102034232012 @default.
- W2110203423 countsByYear W21102034232013 @default.
- W2110203423 countsByYear W21102034232014 @default.
- W2110203423 countsByYear W21102034232017 @default.
- W2110203423 countsByYear W21102034232018 @default.
- W2110203423 countsByYear W21102034232019 @default.
- W2110203423 countsByYear W21102034232020 @default.
- W2110203423 countsByYear W21102034232021 @default.
- W2110203423 countsByYear W21102034232022 @default.
- W2110203423 crossrefType "journal-article" @default.
- W2110203423 hasAuthorship W2110203423A5018256474 @default.
- W2110203423 hasAuthorship W2110203423A5079220399 @default.
- W2110203423 hasAuthorship W2110203423A5087620365 @default.
- W2110203423 hasConcept C104317684 @default.
- W2110203423 hasConcept C111472728 @default.
- W2110203423 hasConcept C11413529 @default.
- W2110203423 hasConcept C114466953 @default.
- W2110203423 hasConcept C118552586 @default.
- W2110203423 hasConcept C119857082 @default.
- W2110203423 hasConcept C124101348 @default.
- W2110203423 hasConcept C132525143 @default.
- W2110203423 hasConcept C138885662 @default.
- W2110203423 hasConcept C153180895 @default.
- W2110203423 hasConcept C154945302 @default.
- W2110203423 hasConcept C15744967 @default.
- W2110203423 hasConcept C185592680 @default.
- W2110203423 hasConcept C199360897 @default.
- W2110203423 hasConcept C2781067378 @default.
- W2110203423 hasConcept C41008148 @default.
- W2110203423 hasConcept C522805319 @default.
- W2110203423 hasConcept C55493867 @default.
- W2110203423 hasConcept C556910895 @default.
- W2110203423 hasConcept C63479239 @default.
- W2110203423 hasConcept C75553542 @default.
- W2110203423 hasConcept C80444323 @default.
- W2110203423 hasConceptScore W2110203423C104317684 @default.
- W2110203423 hasConceptScore W2110203423C111472728 @default.
- W2110203423 hasConceptScore W2110203423C11413529 @default.
- W2110203423 hasConceptScore W2110203423C114466953 @default.
- W2110203423 hasConceptScore W2110203423C118552586 @default.
- W2110203423 hasConceptScore W2110203423C119857082 @default.
- W2110203423 hasConceptScore W2110203423C124101348 @default.
- W2110203423 hasConceptScore W2110203423C132525143 @default.
- W2110203423 hasConceptScore W2110203423C138885662 @default.
- W2110203423 hasConceptScore W2110203423C153180895 @default.
- W2110203423 hasConceptScore W2110203423C154945302 @default.
- W2110203423 hasConceptScore W2110203423C15744967 @default.
- W2110203423 hasConceptScore W2110203423C185592680 @default.
- W2110203423 hasConceptScore W2110203423C199360897 @default.
- W2110203423 hasConceptScore W2110203423C2781067378 @default.
- W2110203423 hasConceptScore W2110203423C41008148 @default.
- W2110203423 hasConceptScore W2110203423C522805319 @default.
- W2110203423 hasConceptScore W2110203423C55493867 @default.
- W2110203423 hasConceptScore W2110203423C556910895 @default.