Matches in SemOpenAlex for { <https://semopenalex.org/work/W2110221529> ?p ?o ?g. }
- W2110221529 endingPage "43" @default.
- W2110221529 startingPage "27" @default.
- W2110221529 abstract "Biofilm-embedded Mn oxides exert important controls on trace metal cycling in aquatic and soil environments. The speciation and mobility of Zn in particular has been linked to Mn oxides found in streams, wetlands, soils, and aquifers. We investigated the mechanisms of Zn sorption to a biogenic Mn oxide within a biofilm produced by model soil and freshwater MnII-oxidizing bacteria Pseudomonas putida. The biogenic Mn oxide is a c-disordered birnessite with hexagonal layer symmetry. Zinc adsorption isotherm and Zn and Mn K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy experiments were conducted at pH 6.9 to characterize Zn sorption to this biogenic Mn oxide, and to determine whether the bioorganic components of the biofilm affect metal sorption properties. The EXAFS data were analyzed by spectral fitting, principal component analysis, and linear least-squares fitting with reference spectra. Zinc speciation was found to change as Zn loading to the biosorbent [bacterial cells, extracellular polymeric substances (EPS), and biogenic Mn oxide] increased. At low Zn loading (0.13 ± 0.04 mol Zn kg−1 biosorbent), Zn was sorbed to crystallographically well-defined sites on the biogenic oxide layers in tetrahedral coordination to structural O atoms. The fit to the EXAFS spectrum was consistent with Zn sorption above and below the MnIV vacancy sites of the oxide layers. As Zn loading increased to 0.72 ± 0.04 mol Zn kg−1 biosorbent, Zn was also detected in octahedral coordination to these sites. Overall, our results indicate that the biofilm did not intervene in Zn sorption by the Mn-oxide because sorption to the organic material was observed only after all Mn vacancy sites were capped by Zn. The organic functional groups present in the biofilm contributed significantly to Zn removal from solution when Zn concentrations exceeded the sorption capacity of the biooxide. At the highest Zn loading studied, 1.50 ± 0.36 mol Zn kg−1 biosorbent, the proportion of total Zn sorption attributed to bioorganic material was 38 mol%. The maximum Zn loading to the biogenic oxide that we observed was 4.1 mol Zn kg−1 biogenic Mn oxide, corresponding to 0.37 ± 0.02 mol Zn mol−1 Mn. This loading is in excellent agreement with previous estimates of the content of cation vacancies in the biogenic oxide. The results of this study improve our knowledge of Zn speciation in natural systems and are consistent with those of Zn speciation in mineral soil fractions and ferromanganese nodules where the Mn oxides present are possibly biogenic." @default.
- W2110221529 created "2016-06-24" @default.
- W2110221529 creator A5053641292 @default.
- W2110221529 creator A5060067287 @default.
- W2110221529 creator A5065736067 @default.
- W2110221529 creator A5069579589 @default.
- W2110221529 date "2006-01-01" @default.
- W2110221529 modified "2023-10-18" @default.
- W2110221529 title "Zinc sorption to biogenic hexagonal-birnessite particles within a hydrated bacterial biofilm" @default.
- W2110221529 cites W124511460 @default.
- W2110221529 cites W1870015288 @default.
- W2110221529 cites W1968848902 @default.
- W2110221529 cites W1970092891 @default.
- W2110221529 cites W1974661092 @default.
- W2110221529 cites W1976561751 @default.
- W2110221529 cites W1978450379 @default.
- W2110221529 cites W1981074568 @default.
- W2110221529 cites W1982536024 @default.
- W2110221529 cites W1983138570 @default.
- W2110221529 cites W1989568361 @default.
- W2110221529 cites W1993596116 @default.
- W2110221529 cites W1994052285 @default.
- W2110221529 cites W1999988505 @default.
- W2110221529 cites W2002877849 @default.
- W2110221529 cites W2009146224 @default.
- W2110221529 cites W2011093421 @default.
- W2110221529 cites W2012113589 @default.
- W2110221529 cites W2012621192 @default.
- W2110221529 cites W2020218467 @default.
- W2110221529 cites W2020322048 @default.
- W2110221529 cites W2027519825 @default.
- W2110221529 cites W2028845337 @default.
- W2110221529 cites W2031909326 @default.
- W2110221529 cites W2032491571 @default.
- W2110221529 cites W2034707634 @default.
- W2110221529 cites W2036959759 @default.
- W2110221529 cites W2046049933 @default.
- W2110221529 cites W2047799478 @default.
- W2110221529 cites W2052394654 @default.
- W2110221529 cites W2056685658 @default.
- W2110221529 cites W2057104903 @default.
- W2110221529 cites W2059257401 @default.
- W2110221529 cites W2063711122 @default.
- W2110221529 cites W2072449368 @default.
- W2110221529 cites W2075752851 @default.
- W2110221529 cites W2077917573 @default.
- W2110221529 cites W2085475154 @default.
- W2110221529 cites W2095383073 @default.
- W2110221529 cites W2095664287 @default.
- W2110221529 cites W2098107208 @default.
- W2110221529 cites W2099460846 @default.
- W2110221529 cites W2102955145 @default.
- W2110221529 cites W2107838687 @default.
- W2110221529 cites W2123154505 @default.
- W2110221529 cites W2125667611 @default.
- W2110221529 cites W2126988622 @default.
- W2110221529 cites W2139491541 @default.
- W2110221529 cites W2161559185 @default.
- W2110221529 cites W2170424371 @default.
- W2110221529 cites W2289960406 @default.
- W2110221529 cites W2313579573 @default.
- W2110221529 cites W4232454054 @default.
- W2110221529 doi "https://doi.org/10.1016/j.gca.2005.08.029" @default.
- W2110221529 hasPublicationYear "2006" @default.
- W2110221529 type Work @default.
- W2110221529 sameAs 2110221529 @default.
- W2110221529 citedByCount "179" @default.
- W2110221529 countsByYear W21102215292012 @default.
- W2110221529 countsByYear W21102215292013 @default.
- W2110221529 countsByYear W21102215292014 @default.
- W2110221529 countsByYear W21102215292015 @default.
- W2110221529 countsByYear W21102215292016 @default.
- W2110221529 countsByYear W21102215292017 @default.
- W2110221529 countsByYear W21102215292018 @default.
- W2110221529 countsByYear W21102215292019 @default.
- W2110221529 countsByYear W21102215292020 @default.
- W2110221529 countsByYear W21102215292021 @default.
- W2110221529 countsByYear W21102215292022 @default.
- W2110221529 countsByYear W21102215292023 @default.
- W2110221529 crossrefType "journal-article" @default.
- W2110221529 hasAuthorship W2110221529A5053641292 @default.
- W2110221529 hasAuthorship W2110221529A5060067287 @default.
- W2110221529 hasAuthorship W2110221529A5065736067 @default.
- W2110221529 hasAuthorship W2110221529A5069579589 @default.
- W2110221529 hasConcept C107861141 @default.
- W2110221529 hasConcept C107872376 @default.
- W2110221529 hasConcept C119824511 @default.
- W2110221529 hasConcept C121332964 @default.
- W2110221529 hasConcept C147789679 @default.
- W2110221529 hasConcept C150394285 @default.
- W2110221529 hasConcept C178790620 @default.
- W2110221529 hasConcept C179104552 @default.
- W2110221529 hasConcept C185592680 @default.
- W2110221529 hasConcept C2779471666 @default.
- W2110221529 hasConcept C2779851234 @default.
- W2110221529 hasConcept C2993225395 @default.
- W2110221529 hasConcept C535196362 @default.
- W2110221529 hasConcept C58445606 @default.