Matches in SemOpenAlex for { <https://semopenalex.org/work/W2110278466> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2110278466 endingPage "938" @default.
- W2110278466 startingPage "895" @default.
- W2110278466 abstract "The error backpropagation learning algorithm (BP) is generally considered biologically implausible because it does not use locally available, activation-based variables. A version of BP that can be computed locally using bidirectional activation recirculation (Hinton and McClelland 1988) instead of backpropagated error derivatives is more biologically plausible. This paper presents a generalized version of the recirculation algorithm (GeneRec), which overcomes several limitations of the earlier algorithm by using a generic recurrent network with sigmoidal units that can learn arbitrary input/output mappings. However, the contrastive Hebbian learning algorithm (CHL, also known as DBM or mean field learning) also uses local variables to perform error-driven learning in a sigmoidal recurrent network. CHL was derived in a stochastic framework (the Boltzmann machine), but has been extended to the deterministic case in various ways, all of which rely on problematic approximations and assumptions, leading some to conclude that it is fundamentally flawed. This paper shows that CHL can be derived instead from within the BP framework via the GeneRec algorithm. CHL is a symmetry-preserving version of GeneRec that uses a simple approximation to the midpoint or second-order accurate Runge-Kutta method of numerical integration, which explains the generally faster learning speed of CHL compared to BI. Thus, all known fully general error-driven learning algorithms that use local activation-based variables in deterministic networks can be considered variations of the GeneRec algorithm (and indirectly, of the backpropagation algorithm). GeneRec therefore provides a promising framework for thinking about how the brain might perform error-driven learning. To further this goal, an explicit biological mechanism is proposed that would be capable of implementing GeneRec-style learning. This mechanism is consistent with available evidence regarding synaptic modification in neurons in the neocortex and hippocampus, and makes further predictions." @default.
- W2110278466 created "2016-06-24" @default.
- W2110278466 creator A5013008078 @default.
- W2110278466 date "1996-07-01" @default.
- W2110278466 modified "2023-10-12" @default.
- W2110278466 title "Biologically Plausible Error-Driven Learning Using Local Activation Differences: The Generalized Recirculation Algorithm" @default.
- W2110278466 cites W1642699591 @default.
- W2110278466 cites W1989691430 @default.
- W2110278466 cites W1992479858 @default.
- W2110278466 cites W2006544565 @default.
- W2110278466 cites W2007431958 @default.
- W2110278466 cites W2016201172 @default.
- W2110278466 cites W2024938223 @default.
- W2110278466 cites W2046913730 @default.
- W2110278466 cites W2051069074 @default.
- W2110278466 cites W2057737850 @default.
- W2110278466 cites W2059010387 @default.
- W2110278466 cites W2065965042 @default.
- W2110278466 cites W2077758457 @default.
- W2110278466 cites W2112246162 @default.
- W2110278466 cites W2149274294 @default.
- W2110278466 cites W3022436500 @default.
- W2110278466 cites W4253572625 @default.
- W2110278466 doi "https://doi.org/10.1162/neco.1996.8.5.895" @default.
- W2110278466 hasPublicationYear "1996" @default.
- W2110278466 type Work @default.
- W2110278466 sameAs 2110278466 @default.
- W2110278466 citedByCount "294" @default.
- W2110278466 countsByYear W21102784662012 @default.
- W2110278466 countsByYear W21102784662013 @default.
- W2110278466 countsByYear W21102784662014 @default.
- W2110278466 countsByYear W21102784662015 @default.
- W2110278466 countsByYear W21102784662016 @default.
- W2110278466 countsByYear W21102784662017 @default.
- W2110278466 countsByYear W21102784662018 @default.
- W2110278466 countsByYear W21102784662019 @default.
- W2110278466 countsByYear W21102784662020 @default.
- W2110278466 countsByYear W21102784662021 @default.
- W2110278466 countsByYear W21102784662022 @default.
- W2110278466 countsByYear W21102784662023 @default.
- W2110278466 crossrefType "journal-article" @default.
- W2110278466 hasAuthorship W2110278466A5013008078 @default.
- W2110278466 hasConcept C11413529 @default.
- W2110278466 hasConcept C154945302 @default.
- W2110278466 hasConcept C155032097 @default.
- W2110278466 hasConcept C192576344 @default.
- W2110278466 hasConcept C33923547 @default.
- W2110278466 hasConcept C41008148 @default.
- W2110278466 hasConcept C50644808 @default.
- W2110278466 hasConcept C81388566 @default.
- W2110278466 hasConceptScore W2110278466C11413529 @default.
- W2110278466 hasConceptScore W2110278466C154945302 @default.
- W2110278466 hasConceptScore W2110278466C155032097 @default.
- W2110278466 hasConceptScore W2110278466C192576344 @default.
- W2110278466 hasConceptScore W2110278466C33923547 @default.
- W2110278466 hasConceptScore W2110278466C41008148 @default.
- W2110278466 hasConceptScore W2110278466C50644808 @default.
- W2110278466 hasConceptScore W2110278466C81388566 @default.
- W2110278466 hasIssue "5" @default.
- W2110278466 hasLocation W21102784661 @default.
- W2110278466 hasOpenAccess W2110278466 @default.
- W2110278466 hasPrimaryLocation W21102784661 @default.
- W2110278466 hasRelatedWork W1495379181 @default.
- W2110278466 hasRelatedWork W2079644737 @default.
- W2110278466 hasRelatedWork W2157746493 @default.
- W2110278466 hasRelatedWork W2240896738 @default.
- W2110278466 hasRelatedWork W2371065793 @default.
- W2110278466 hasRelatedWork W2790814253 @default.
- W2110278466 hasRelatedWork W2894173309 @default.
- W2110278466 hasRelatedWork W2993645418 @default.
- W2110278466 hasRelatedWork W3001577138 @default.
- W2110278466 hasRelatedWork W3170224572 @default.
- W2110278466 hasVolume "8" @default.
- W2110278466 isParatext "false" @default.
- W2110278466 isRetracted "false" @default.
- W2110278466 magId "2110278466" @default.
- W2110278466 workType "article" @default.