Matches in SemOpenAlex for { <https://semopenalex.org/work/W2110361425> ?p ?o ?g. }
- W2110361425 endingPage "1584" @default.
- W2110361425 startingPage "1577" @default.
- W2110361425 abstract "The filamentous fungi comprise a ubiquitous group of heterotrophic organisms living as saprophytes, parasites, or symbionts. The basis for fungal vegetative growth is the continued and coordinated expansion of a series of fungal cell tips into a linear or complex structure. Fungi differentiate into a variety of structures including spores, which are the effective means of genome protection, survival, and propagation. Spores are also the primary agent for infecting host organisms for many human- and plant-pathogenic fungi. Asexual sporulation is a prevalent mode of reproduction for a diverse group of fungi, which results in the production of vast numbers of mitotically derived spores (reviewed in reference 2). The genus Aspergillus represents the most widespread fungi in our environment, which all reproduce asexually by forming long chains of conidiospores (or conidia) radiating from a central structure known as a conidiophore (Fig. 1) (reviewed in reference 3). The impact of various Aspergillus species on humans runs the range from “good” to “bad.” For instance, several species such as Aspergillus oryzae and Aspergillus niger are used in industry for enzyme production and food processing. In contrast, Aspergillus flavus and Aspergillus parasiticus can produce the most potent naturally present carcinogen, aflatoxin, which can contaminate various foods and feeds (reviewed in reference 43). Moreover, the opportunistic human pathogen Aspergillus fumigatus has become the most prevalent airborne fungal pathogen, causing severe and usually fatal invasive aspergillosis in immunocompromised patients (reviewed in reference 22). Aspergillus nidulans has served as an excellent model system for studying various biological questions, primarily due to the ease of genetic analysis through meiotic (sexual) recombination and the development of sophisticated molecular tools (32). These properties have provided a better understanding of the mechanisms controlling growth, development, secondary metabolism, and other aspects of cell biology in filamentous fungi (3, 35, 50, 57). The availability of the genome sequences of several aspergilli facilitates comparative genomic, genetic, and functional studies. In particular, knowledge and information obtained from a model fungus can be effectively tested in less genetically tractable aspergilli. Recent studies of a number of Aspergillus species have proven that a model fungus can provide a useful framework for understanding the biology of agriculturally and/or medically relevant aspergilli (6, 7, 38, 41, 49, 57). For instance, the novel nuclear protein LaeA has been shown to function as a global regulator of secondary metabolism as well as a regulator of morphogenetic virulence factors in the genus Aspergillus (6, 7). This review summarizes our current understanding of the genetic mechanisms controlling asexual development (conidiation) and vegetative growth in the model (A. nidulans) and pathogenic (A. fumigatus) aspergilli." @default.
- W2110361425 created "2016-06-24" @default.
- W2110361425 creator A5041432511 @default.
- W2110361425 creator A5069990561 @default.
- W2110361425 creator A5085773953 @default.
- W2110361425 date "2006-10-01" @default.
- W2110361425 modified "2023-10-14" @default.
- W2110361425 title "Growth and Developmental Control in the Model and Pathogenic Aspergilli" @default.
- W2110361425 cites W1506412210 @default.
- W2110361425 cites W1566751127 @default.
- W2110361425 cites W1591529270 @default.
- W2110361425 cites W1764152111 @default.
- W2110361425 cites W1909891465 @default.
- W2110361425 cites W1914134291 @default.
- W2110361425 cites W1943685035 @default.
- W2110361425 cites W1950491025 @default.
- W2110361425 cites W1950694785 @default.
- W2110361425 cites W1963874309 @default.
- W2110361425 cites W1964420128 @default.
- W2110361425 cites W1974878413 @default.
- W2110361425 cites W1975112692 @default.
- W2110361425 cites W1978482918 @default.
- W2110361425 cites W1993430135 @default.
- W2110361425 cites W1997731523 @default.
- W2110361425 cites W2001981352 @default.
- W2110361425 cites W2010091762 @default.
- W2110361425 cites W2015650792 @default.
- W2110361425 cites W2022878734 @default.
- W2110361425 cites W2025526564 @default.
- W2110361425 cites W2029614964 @default.
- W2110361425 cites W2032318665 @default.
- W2110361425 cites W2038226012 @default.
- W2110361425 cites W2043095804 @default.
- W2110361425 cites W2051612334 @default.
- W2110361425 cites W2052639804 @default.
- W2110361425 cites W2067886846 @default.
- W2110361425 cites W2069202955 @default.
- W2110361425 cites W2070916151 @default.
- W2110361425 cites W2082920807 @default.
- W2110361425 cites W2096841585 @default.
- W2110361425 cites W2099170652 @default.
- W2110361425 cites W2100001236 @default.
- W2110361425 cites W2101399690 @default.
- W2110361425 cites W2102631577 @default.
- W2110361425 cites W2106932184 @default.
- W2110361425 cites W2108313755 @default.
- W2110361425 cites W2109348634 @default.
- W2110361425 cites W2111440586 @default.
- W2110361425 cites W2115464623 @default.
- W2110361425 cites W2122950102 @default.
- W2110361425 cites W2124335694 @default.
- W2110361425 cites W2126158040 @default.
- W2110361425 cites W2140942626 @default.
- W2110361425 cites W2145923257 @default.
- W2110361425 cites W2148472585 @default.
- W2110361425 cites W2148630868 @default.
- W2110361425 cites W2150525179 @default.
- W2110361425 cites W2153911335 @default.
- W2110361425 cites W2167198817 @default.
- W2110361425 cites W2167342861 @default.
- W2110361425 cites W2167877111 @default.
- W2110361425 cites W2168154047 @default.
- W2110361425 cites W2441266877 @default.
- W2110361425 cites W252346336 @default.
- W2110361425 cites W4230337010 @default.
- W2110361425 cites W4242594170 @default.
- W2110361425 doi "https://doi.org/10.1128/ec.00193-06" @default.
- W2110361425 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/1595332" @default.
- W2110361425 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17030989" @default.
- W2110361425 hasPublicationYear "2006" @default.
- W2110361425 type Work @default.
- W2110361425 sameAs 2110361425 @default.
- W2110361425 citedByCount "81" @default.
- W2110361425 countsByYear W21103614252012 @default.
- W2110361425 countsByYear W21103614252013 @default.
- W2110361425 countsByYear W21103614252014 @default.
- W2110361425 countsByYear W21103614252015 @default.
- W2110361425 countsByYear W21103614252016 @default.
- W2110361425 countsByYear W21103614252017 @default.
- W2110361425 countsByYear W21103614252018 @default.
- W2110361425 countsByYear W21103614252019 @default.
- W2110361425 countsByYear W21103614252020 @default.
- W2110361425 countsByYear W21103614252022 @default.
- W2110361425 crossrefType "journal-article" @default.
- W2110361425 hasAuthorship W2110361425A5041432511 @default.
- W2110361425 hasAuthorship W2110361425A5069990561 @default.
- W2110361425 hasAuthorship W2110361425A5085773953 @default.
- W2110361425 hasBestOaLocation W21103614251 @default.
- W2110361425 hasConcept C104317684 @default.
- W2110361425 hasConcept C143065580 @default.
- W2110361425 hasConcept C2776923806 @default.
- W2110361425 hasConcept C54355233 @default.
- W2110361425 hasConcept C86803240 @default.
- W2110361425 hasConcept C89423630 @default.
- W2110361425 hasConcept C95444343 @default.
- W2110361425 hasConceptScore W2110361425C104317684 @default.
- W2110361425 hasConceptScore W2110361425C143065580 @default.
- W2110361425 hasConceptScore W2110361425C2776923806 @default.