Matches in SemOpenAlex for { <https://semopenalex.org/work/W2110472511> ?p ?o ?g. }
- W2110472511 endingPage "2306" @default.
- W2110472511 startingPage "2298" @default.
- W2110472511 abstract "We introduce an automated method, called prior feature Support Vector Machine-Markov Random Field (pSVMRF), to segment three-dimensional mouse brain Magnetic Resonance Microscopy (MRM) images. Our earlier work, extended MRF (eMRF) integrated Support Vector Machine (SVM) and Markov Random Field (MRF) approaches, leading to improved segmentation accuracy; however, the computation of eMRF is very expensive, which may limit its performance on segmentation and robustness. In this study pSVMRF reduces training and testing time for SVM, while boosting segmentation performance. Unlike the eMRF approach, where MR intensity information and location priors are linearly combined, pSVMRF combines this information in a nonlinear fashion, and enhances the discriminative ability of the algorithm. We validate the proposed method using MR imaging of unstained and actively stained mouse brain specimens, and compare segmentation accuracy with two existing methods: eMRF and MRF. C57BL/6 mice are used for training and testing, using cross validation. For formalin fixed C57BL/6 specimens, pSVMRF outperforms both eMRF and MRF. The segmentation accuracy for C57BL/6 brains, stained or not, was similar for larger structures like hippocampus and caudate putamen, (~ 87%), but increased substantially for smaller regions like susbtantia nigra (from 78.36% to 91.55%), and anterior commissure (from ~ 50% to ~ 80%). To test segmentation robustness against increased anatomical variability we add two strains, BXD29 and a transgenic mouse model of Alzheimer's disease. Segmentation accuracy for new strains is 80% for hippocampus, and caudate putamen, indicating that pSVMRF is a promising approach for phenotyping mouse models of human brain disorders." @default.
- W2110472511 created "2016-06-24" @default.
- W2110472511 creator A5034195487 @default.
- W2110472511 creator A5051190025 @default.
- W2110472511 creator A5053204257 @default.
- W2110472511 creator A5069823101 @default.
- W2110472511 creator A5075012459 @default.
- W2110472511 date "2012-02-01" @default.
- W2110472511 modified "2023-09-26" @default.
- W2110472511 title "A prior feature SVM-MRF based method for mouse brain segmentation" @default.
- W2110472511 cites W1504175076 @default.
- W2110472511 cites W1980560915 @default.
- W2110472511 cites W1997732141 @default.
- W2110472511 cites W2004293194 @default.
- W2110472511 cites W2007804187 @default.
- W2110472511 cites W2024410850 @default.
- W2110472511 cites W2027246093 @default.
- W2110472511 cites W2032038095 @default.
- W2110472511 cites W2045404628 @default.
- W2110472511 cites W2049247209 @default.
- W2110472511 cites W2053506616 @default.
- W2110472511 cites W2059674604 @default.
- W2110472511 cites W2064266908 @default.
- W2110472511 cites W2064358322 @default.
- W2110472511 cites W2067150211 @default.
- W2110472511 cites W2069798429 @default.
- W2110472511 cites W2076934502 @default.
- W2110472511 cites W2086031793 @default.
- W2110472511 cites W2087328731 @default.
- W2110472511 cites W2091873248 @default.
- W2110472511 cites W2091920492 @default.
- W2110472511 cites W2113884510 @default.
- W2110472511 cites W2131051578 @default.
- W2110472511 cites W2136573752 @default.
- W2110472511 cites W2142412936 @default.
- W2110472511 cites W2152864425 @default.
- W2110472511 cites W2152932720 @default.
- W2110472511 cites W2163973397 @default.
- W2110472511 cites W2172000360 @default.
- W2110472511 cites W2615412239 @default.
- W2110472511 cites W3102998284 @default.
- W2110472511 doi "https://doi.org/10.1016/j.neuroimage.2011.09.053" @default.
- W2110472511 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3508710" @default.
- W2110472511 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21988893" @default.
- W2110472511 hasPublicationYear "2012" @default.
- W2110472511 type Work @default.
- W2110472511 sameAs 2110472511 @default.
- W2110472511 citedByCount "32" @default.
- W2110472511 countsByYear W21104725112012 @default.
- W2110472511 countsByYear W21104725112013 @default.
- W2110472511 countsByYear W21104725112014 @default.
- W2110472511 countsByYear W21104725112015 @default.
- W2110472511 countsByYear W21104725112016 @default.
- W2110472511 countsByYear W21104725112017 @default.
- W2110472511 countsByYear W21104725112018 @default.
- W2110472511 countsByYear W21104725112019 @default.
- W2110472511 countsByYear W21104725112021 @default.
- W2110472511 countsByYear W21104725112022 @default.
- W2110472511 crossrefType "journal-article" @default.
- W2110472511 hasAuthorship W2110472511A5034195487 @default.
- W2110472511 hasAuthorship W2110472511A5051190025 @default.
- W2110472511 hasAuthorship W2110472511A5053204257 @default.
- W2110472511 hasAuthorship W2110472511A5069823101 @default.
- W2110472511 hasAuthorship W2110472511A5075012459 @default.
- W2110472511 hasBestOaLocation W21104725112 @default.
- W2110472511 hasConcept C104317684 @default.
- W2110472511 hasConcept C105702510 @default.
- W2110472511 hasConcept C12267149 @default.
- W2110472511 hasConcept C124504099 @default.
- W2110472511 hasConcept C153180895 @default.
- W2110472511 hasConcept C154945302 @default.
- W2110472511 hasConcept C169258074 @default.
- W2110472511 hasConcept C2778045648 @default.
- W2110472511 hasConcept C2779048510 @default.
- W2110472511 hasConcept C41008148 @default.
- W2110472511 hasConcept C55493867 @default.
- W2110472511 hasConcept C63479239 @default.
- W2110472511 hasConcept C86803240 @default.
- W2110472511 hasConcept C89600930 @default.
- W2110472511 hasConcept C97931131 @default.
- W2110472511 hasConceptScore W2110472511C104317684 @default.
- W2110472511 hasConceptScore W2110472511C105702510 @default.
- W2110472511 hasConceptScore W2110472511C12267149 @default.
- W2110472511 hasConceptScore W2110472511C124504099 @default.
- W2110472511 hasConceptScore W2110472511C153180895 @default.
- W2110472511 hasConceptScore W2110472511C154945302 @default.
- W2110472511 hasConceptScore W2110472511C169258074 @default.
- W2110472511 hasConceptScore W2110472511C2778045648 @default.
- W2110472511 hasConceptScore W2110472511C2779048510 @default.
- W2110472511 hasConceptScore W2110472511C41008148 @default.
- W2110472511 hasConceptScore W2110472511C55493867 @default.
- W2110472511 hasConceptScore W2110472511C63479239 @default.
- W2110472511 hasConceptScore W2110472511C86803240 @default.
- W2110472511 hasConceptScore W2110472511C89600930 @default.
- W2110472511 hasConceptScore W2110472511C97931131 @default.
- W2110472511 hasIssue "3" @default.
- W2110472511 hasLocation W21104725111 @default.
- W2110472511 hasLocation W21104725112 @default.