Matches in SemOpenAlex for { <https://semopenalex.org/work/W2110491409> ?p ?o ?g. }
Showing items 1 to 56 of
56
with 100 items per page.
- W2110491409 abstract "The channel capacity and error-rate performance of MIMO systems could be improved by increasing the number of transmit antennas and receive antennas and the size of constellation used for modulation (Foschini and Gans, 1998). A main bottleneck that restricts the practical application of MIMO system is the unsatisfactory performance of the decoding algorithms, due to either high computational complexity required or poor symbol error-rate (SER) performance. Maximum-likelihood (ML) decoding which employs an exhaustive search strategy under the minimum Euclidean-distance principle can exploit all the available diversity and provide the optimum SER performance. However, its complexity increases exponentially with the number of antennas and the size of constellation used. Thus, for many cases, it is impractical to implement. Several sub-optimum decoding algorithms such as equalization-based zero-forcing (ZF) and minimum-mean-square-error (MMSE) detectors and nulling-and-cancelling detectors (NC) have been proposed for MIMO systems (Paulraj, Nabar and Gore, 2003). Although their computation complexities are dramatically less, these decoding algorithms have severe degradations in SER performances. Sphere decoding (SD) (Viterbo and Boutros, 1999) is another search-based algorithm. Unlike the exhaustive search engaged in ML decoding, SD confines the searching zone to be inside some hyper sphere constructed in the space spanned by the received lattice points. It can offer optimum SER performance with reasonable complexity. Several searching strategies such as Fincke-Pohst (Fincke and Pohst, 1985) and Schnorr-Euchner (Schnorr and Euchner, 1994) have been developed to further improve the searching efficiency in SD. Since the minimum Euclidean-distance principle could result in an optimum SER performance, the purpose of this chapter is to introduce another perspective of reconsidering this principle from the transmit lattice space. In the space spanned by the transmit lattice points, the Euclidean distance in ML decoding is found to be related to a series of concentric hyper ellipsoids. Searching the lattice point with the minimum Euclidean distance from the received signal vector is equivalent to searching the lattice point that is passed through by the smallest hyper ellipsoid. Decoding algorithms following this perspective are often called geometrical detection (Artes, Seethaler and Hlawatsch, 2003). In this Chapter, the geometrical analysis of signal decoding for MIMO channels is presented. Then, the ellipsoid searching decoding algorithm (Shao, Cheung and Yuk, 2009) is described. It is an add-on detection algorithm to standard suboptimal detection schemes" @default.
- W2110491409 created "2016-06-24" @default.
- W2110491409 creator A5027674211 @default.
- W2110491409 creator A5083936465 @default.
- W2110491409 creator A5091812040 @default.
- W2110491409 date "2011-04-04" @default.
- W2110491409 modified "2023-10-04" @default.
- W2110491409 title "Geometrical Detection Algorithm for MIMO Systems" @default.
- W2110491409 cites W1508642566 @default.
- W2110491409 cites W1667950888 @default.
- W2110491409 cites W1997002146 @default.
- W2110491409 cites W2116631972 @default.
- W2110491409 cites W2126483728 @default.
- W2110491409 cites W2161783022 @default.
- W2110491409 cites W2166343668 @default.
- W2110491409 cites W2169184584 @default.
- W2110491409 cites W2541204438 @default.
- W2110491409 cites W2610857016 @default.
- W2110491409 doi "https://doi.org/10.5772/15553" @default.
- W2110491409 hasPublicationYear "2011" @default.
- W2110491409 type Work @default.
- W2110491409 sameAs 2110491409 @default.
- W2110491409 citedByCount "0" @default.
- W2110491409 crossrefType "book-chapter" @default.
- W2110491409 hasAuthorship W2110491409A5027674211 @default.
- W2110491409 hasAuthorship W2110491409A5083936465 @default.
- W2110491409 hasAuthorship W2110491409A5091812040 @default.
- W2110491409 hasBestOaLocation W21104914091 @default.
- W2110491409 hasConcept C11413529 @default.
- W2110491409 hasConcept C127162648 @default.
- W2110491409 hasConcept C207987634 @default.
- W2110491409 hasConcept C41008148 @default.
- W2110491409 hasConcept C76155785 @default.
- W2110491409 hasConceptScore W2110491409C11413529 @default.
- W2110491409 hasConceptScore W2110491409C127162648 @default.
- W2110491409 hasConceptScore W2110491409C207987634 @default.
- W2110491409 hasConceptScore W2110491409C41008148 @default.
- W2110491409 hasConceptScore W2110491409C76155785 @default.
- W2110491409 hasLocation W21104914091 @default.
- W2110491409 hasLocation W21104914092 @default.
- W2110491409 hasOpenAccess W2110491409 @default.
- W2110491409 hasPrimaryLocation W21104914091 @default.
- W2110491409 hasRelatedWork W1850361415 @default.
- W2110491409 hasRelatedWork W1973431635 @default.
- W2110491409 hasRelatedWork W1993076092 @default.
- W2110491409 hasRelatedWork W2109240011 @default.
- W2110491409 hasRelatedWork W2152560807 @default.
- W2110491409 hasRelatedWork W2165394982 @default.
- W2110491409 hasRelatedWork W2351491280 @default.
- W2110491409 hasRelatedWork W2371447506 @default.
- W2110491409 hasRelatedWork W2386767533 @default.
- W2110491409 hasRelatedWork W303980170 @default.
- W2110491409 isParatext "false" @default.
- W2110491409 isRetracted "false" @default.
- W2110491409 magId "2110491409" @default.
- W2110491409 workType "book-chapter" @default.